Pregunta
upstudy study bank question image url

For the following variables, determine whether \( r \) is a function of \( s, s \) is a function of \( r \), or neither. \( r \) is the circumference of any coin and \( s \) is its year of minting.

Ask by Carroll Deleon. in the United States
Feb 05,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Neither \( r \) nor \( s \) is a function of the other.

Solución

To determine the relationship between \( r \) (the circumference of a coin) and \( s \) (its year of minting), let's analyze both possible scenarios: 1. **Is \( r \) a function of \( s \)?** - **Function Definition:** For \( r \) to be a function of \( s \), each year \( s \) must correspond to exactly one circumference \( r \). - **Analysis:** In reality, multiple coins can be minted in the same year with different circumferences. For example, a country might release coins of varying denominations or designs in a single year, each having a different circumference. - **Conclusion:** **\( r \) is not a function of \( s \).** 2. **Is \( s \) a function of \( r \)?** - **Function Definition:** For \( s \) to be a function of \( r \), each circumference \( r \) must correspond to exactly one year \( s \). - **Analysis:** A specific circumference can be associated with coins minted in multiple different years. Additionally, different countries might produce coins with the same circumference in different years. - **Conclusion:** **\( s \) is not a function of \( r \).** Since neither \( r \) is uniquely determined by \( s \) nor \( s \) is uniquely determined by \( r \), the relationship between them falls into the "neither" category. **Answer:** Neither variable is a function of the other.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

The relationship between \( r \) and \( s \) in this context does not define \( r \) as a function of \( s \), nor does it define \( s \) as a function of \( r \). While coins of the same diameter (and thus the same circumference) can be minted in multiple years, a specific year of minting does not yield a unique circumference (as different coins can have identical circumferences). Therefore, neither variable uniquely determines the other, making this relationship one where neither is a function of the other. In simpler terms, you could have several coins from the same year that all have the same size, but you can also have coins of different years that are of the same size. Thus, it's a bit like trying to guess an entire library just by knowing a single book title—there's simply too much overlap!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad