Pregunta
upstudy study bank question image url

17. Given that and are irrational numbers, show that the following are irrational numbers:

Ask by Delgado Turnbull. in Zambia
Mar 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder


  1. is irrational.
  2. is irrational.
  3. is irrational.
  4. is irrational.

Solución

Let’s solve the problems step by step.

Problem 16: Absolute Values

We need to find the absolute values for the following expressions:

(i)

The absolute value of a positive number is the number itself:

(ii)

The absolute value of a negative number is its positive counterpart:

(iii)

First, calculate :
Now, take the absolute value:

(iv)

First, we need to find a common denominator to subtract the fractions. The least common multiple of 7 and 8 is 56.
Convert each fraction:
Now, subtract:
Taking the absolute value:

(v)

Calculate the absolute values:
Now substitute:

Summary of Absolute Values


Problem 17: Showing Irrationality

We need to show that the following numbers are irrational:

(i)

Assume is rational, then it can be expressed as where and are integers. This implies:
Squaring both sides gives:
This means is even, hence is even. Let :
Thus, is even, so is even. This contradicts the assumption that and are coprime. Therefore, is irrational.

(ii)

Assume is rational, then:
Squaring both sides:
Since is rational, must be rational, which is a contradiction. Thus, is irrational.

(iii)

Assume is rational:
Squaring gives:
The discriminant is not a perfect square, hence is irrational. Therefore, is irrational.

(iv)

Assume is rational:
Squaring gives:
The discriminant is not a perfect square, hence is irrational. Therefore, is irrational.

Summary of Irrational Numbers

  1. is irrational.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

The absolute values you asked about are quite straightforward! For (i) , since it’s already positive. (ii) reflects that a negative number’s absolute is its positive counterpart. For (iii) , the difference here is negative, but we take its absolute value. Lastly, for (iv) . Exciting, isn’t it?
Now onto the irrational numbers! For (i), is irrational because a rational number multiplied by an irrational number (like ) results in an irrational number. For (ii), cannot simplify to a rationals as that would lead to contradictions with the properties of irrationals. The same goes for (iii) and (iv) ; neither can be expressed as a fraction of two integers. So irrational fun all around!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad