Pregunta
upstudy study bank question image url

Suppose that a ball is rolling dowri a ramp. The distance traveled by the ball is given by the function \( s(t)=6 t^{2} \), where \( t \) is the time, in seconds, after the ball is released, and \( s(t) \) is measured in feet. Find the balls average velocity in each of the following time intervals. a. \( t_{1}=2 \) to \( t_{2}=3 \) \( \frac{\Delta s}{\Delta t}=\square \mathrm{t} / \mathrm{sec} \)

Ask by Horton Owen. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The ball's average velocity from 2 to 3 seconds is 30 feet per second.

Solución

We are given the distance function s(t) = 6t². The average velocity over the interval [t₁, t₂] is given by   Average Velocity = [s(t₂) - s(t₁)] / (t₂ - t₁). For t₁ = 2 and t₂ = 3: 1. Compute s(3):   s(3) = 6(3²) = 6(9) = 54 feet. 2. Compute s(2):   s(2) = 6(2²) = 6(4) = 24 feet. 3. Find the difference and divide by the time interval:   Average Velocity = (54 - 24) / (3 - 2) = 30/1 = 30 ft/sec. Thus, the ball's average velocity from t = 2 to t = 3 seconds is 30 ft/sec.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the average velocity of the ball over the interval from \( t_1 = 2 \) seconds to \( t_2 = 3 \) seconds, we first need to calculate the distance traveled by the ball at these two times using the given function \( s(t) = 6t^2 \). 1. Calculate \( s(2) \): \[ s(2) = 6(2^2) = 6(4) = 24 \text{ feet} \] 2. Calculate \( s(3) \): \[ s(3) = 6(3^2) = 6(9) = 54 \text{ feet} \] 3. Now, find the change in distance (\( \Delta s \)) and the change in time (\( \Delta t \)): \[ \Delta s = s(3) - s(2) = 54 - 24 = 30 \text{ feet} \] \[ \Delta t = t_2 - t_1 = 3 - 2 = 1 \text{ second} \] 4. Finally, we calculate the average velocity: \[ \frac{\Delta s}{\Delta t} = \frac{30 \text{ feet}}{1 \text{ second}} = 30 \text{ ft/sec} \] Therefore, the average velocity of the ball from \( t = 2 \) to \( t = 3 \) seconds is \( \boxed{30} \text{ ft/sec} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad