Pregunta
upstudy study bank question image url

Find the number of proper subsets of the set. \( \{x \mid x \) is an even number between 17 and 29\( \} \)

Ask by Reese Medina. in the United States
Feb 05,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

There are 63 proper subsets of the set.

Solución

To determine the number of **proper subsets** of the given set, let's follow these steps: 1. **Identify the Elements of the Set:** The set is defined as: \[ \{x \mid x \text{ is an even number between } 17 \text{ and } 29\} \] - **Even numbers between 17 and 29** (exclusive) are: 18, 20, 22, 24, 26, and 28. - So, the set can be written as: \(\{18, 20, 22, 24, 26, 28\}\). 2. **Determine the Number of Elements:** - There are **6 elements** in the set. 3. **Calculate the Total Number of Subsets:** - For a set with \( n \) elements, the total number of subsets is \( 2^n \). - Here, \( 2^6 = 64 \) subsets. 4. **Determine Proper Subsets:** - A **proper subset** is any subset that is **not equal** to the original set. - Therefore, the number of proper subsets is the total number of subsets minus one (to exclude the set itself). - So, \( 64 - 1 = 63 \). **Final Answer:** There are **63** proper subsets of the set.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

The set of even numbers between 17 and 29 includes \(18, 20, 22, 24, 26, 28\). Thus, we have the set \( \{18, 20, 22, 24, 26, 28\} \), which contains 6 elements. To find the number of proper subsets, we first calculate the number of total subsets of a set with \(n\) elements, which is given by \(2^n\). For a set with 6 elements, the total number of subsets is \(2^6 = 64\). Proper subsets are all subsets except for the set itself. Therefore, the number of proper subsets is \(64 - 1 = 63\). So, the number of proper subsets of the set is \(63\).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad