Pregunta
upstudy study bank question image url

IV Expand : and
Solve
Solve :
Deduce the solution of the system :

Ask by Lambert Mccoy. in Lebanon
Mar 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To solve the system:
  1. Expand the expressions:
  2. Solve the inequality :
    • Rewrite as
    • Simplify to
    • Find critical points:
    • Analyze intervals and determine where the expression is non-negative.
  3. Solve the absolute value inequality :
    • Break into cases based on the critical points and
    • Find the solution intervals:
  4. Combine the solutions:
    • Find the intersection of the intervals from Part 2 and Part 3 to get the final solution for the system.
Final Solution:
The solution to the system is the intersection of the intervals from the inequality and the absolute value inequality, resulting in values that satisfy both conditions.

Solución

Let’s tackle each part of the problem step by step.

Part 1: Expand and

  1. Expand :
  2. Expand :

Part 2: Solve

First, we need to rewrite the inequality:
This can be combined into a single fraction:
Now, let’s simplify the numerator:
So the inequality becomes:
Next, we will find the roots of the numerator and denominator to analyze the sign of the expression.
  1. Roots of the numerator :
    Using the quadratic formula:
    This gives us:
  2. Roots of the denominator :
    This gives us:
Now we have the critical points: . We will analyze the sign of the expression in the intervals defined by these points.

Part 3: Solve

To solve this absolute value inequality, we will consider the cases based on the critical points where the expressions inside the absolute values change sign.
  1. Case 1: and (i.e., and - no solutions).
  2. Case 2: and (i.e., and ):
    Thus, .
  3. Case 3: and (i.e., and ):
  4. Case 4: and (i.e., and ):
    Thus, .
Combining the results from all cases, we have:

Part 4: Deduce the solution of the system

Now we need to combine the results from Part 2 and Part 3.
  1. From Part 2, we have the intervals from the inequality .
  2. From Part 3, we have the intervals .
We will find the intersection of these intervals to deduce the solution of the system.
Now, let’s compute the intervals for Part 2 and find the intersection with the intervals from Part 3

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To expand , simply apply the distributive property: . This simplifies to , which results in . Similarly, for , again use the distributive property: , yielding , which simplifies to .
To tackle , start by rearranging and combining the fractions: . This simplifies the numerator to . Now, find the roots of the quadratic using the quadratic formula, and identify the intervals where the function is non-negative, while checking the restrictions from the denominator. This approach reveals where the inequality holds.
Next, for , break this down into two separate cases yielding four sub-inequalities. Solve each case, which helps identify the intervals of . Once resolved, you can combine the findings to find common solutions across all cases, resulting in the final solution intervals.
Lastly, to deduce the solution of the system, simply intersect the solutions of both inequalities derived from the earlier steps, ensuring the constraints of the original expressions are still met. Analyze and combine the intervals to find the feasible solution range that satisfies both parts simultaneously!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad