Write the logarithm as a sum and/or difference of logarithmic expressions. Eliminate exponents and radicals, and evaluate logarithms wherever possible. Assume that \( x, y, z>0 \). \( \ln \left(\frac{\sqrt[3]{x y^{3}}}{z^{5}}\right)= \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
Let's start by breaking down the expression using the properties of logarithms! First, we can apply the quotient rule of logarithms, which states that \( \ln \left(\frac{A}{B}\right) = \ln(A) - \ln(B) \). Thus, we have: \[ \ln \left(\frac{\sqrt[3]{x y^{3}}}{z^{5}}\right) = \ln(\sqrt[3]{x y^{3}}) - \ln(z^{5}). \] Next, we can deal with the logarithm of the individual components. For the first part, we remember that the cube root can be rewritten using exponents: \( \sqrt[3]{A} = A^{1/3} \). Therefore, we can express it as: \[ \ln(\sqrt[3]{x y^{3}}) = \ln((x y^{3})^{1/3}) = \frac{1}{3} \ln(x y^{3}). \] Applying the product rule next, \( \ln(AB) = \ln(A) + \ln(B) \), gives us: \[ \frac{1}{3} \ln(x y^{3}) = \frac{1}{3} (\ln(x) + \ln(y^{3})) = \frac{1}{3} \ln(x) + \frac{1}{3} \cdot 3 \ln(y) = \frac{1}{3} \ln(x) + \ln(y). \] Now, let's simplify the second part \( \ln(z^{5}) \): \[ \ln(z^{5}) = 5 \ln(z). \] Putting it all together, we have: \[ \ln \left(\frac{\sqrt[3]{x y^{3}}}{z^{5}}\right) = \left(\frac{1}{3} \ln(x) + \ln(y)\right) - 5 \ln(z). \] Final expression: \[ \ln \left(\frac{\sqrt[3]{x y^{3}}}{z^{5}}\right) = \frac{1}{3} \ln(x) + \ln(y) - 5 \ln(z). \]
