Pregunta
upstudy study bank question image url

What force is required to bring a 1200 kg car to rest from \( 22 \mathrm{~m} / \mathrm{s} \) in 3 seconds?

Ask by Vaughan Gibbs. in the United States
Jan 10,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

A force of about 8,800 newtons is needed to stop the car.

Solución

To determine the force required to bring a 1200 kg car to rest from a speed of \( 22 \, \text{m/s} \) in 3 seconds, we can use the following steps: 1. **Calculate the acceleration (deceleration):** The formula for acceleration \( a \) is: \[ a = \frac{\Delta v}{\Delta t} \] where: - \( \Delta v \) is the change in velocity. - \( \Delta t \) is the change in time. Here, the car is coming to rest, so the final velocity \( v_f = 0 \, \text{m/s} \) and the initial velocity \( v_i = 22 \, \text{m/s} \). \[ a = \frac{0 - 22 \, \text{m/s}}{3 \, \text{s}} = \frac{-22}{3} \, \text{m/s}^2 \approx -7.33 \, \text{m/s}^2 \] The negative sign indicates that the acceleration is in the opposite direction of the motion (deceleration). 2. **Calculate the force:** Using Newton's second law: \[ F = m \times a \] where: - \( m = 1200 \, \text{kg} \) - \( a = -7.33 \, \text{m/s}^2 \) \[ F = 1200 \, \text{kg} \times (-7.33 \, \text{m/s}^2) = -8800 \, \text{N} \] The negative sign indicates that the force is applied in the direction opposite to the car's motion. 3. **Magnitude of the Force:** Since force is a vector, if you're interested in the magnitude: \[ |F| = 8800 \, \text{N} \] **Final Answer:** A force of approximately 8.8 × 10³ newtons is required to bring the car to rest.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the force required to bring the car to rest, we first need to determine the deceleration. We can use the formula: \[ a = \frac{{\Delta v}}{{\Delta t}} \] Here, \( \Delta v \) is the change in velocity, and \( \Delta t \) is the time interval. The initial velocity \( v_i = 22 \, \mathrm{m/s} \) and the final velocity \( v_f = 0 \, \mathrm{m/s} \). So: \[ \Delta v = v_f - v_i = 0 - 22 = -22 \, \mathrm{m/s} \] The time interval \( \Delta t = 3 \, \mathrm{s} \). Thus, the acceleration \( a \) is: \[ a = \frac{{-22 \, \mathrm{m/s}}}{{3 \, \mathrm{s}}} = -\frac{22}{3} \approx -7.33 \, \mathrm{m/s}^2 \] Now we can use Newton's second law, \( F = ma \), to find the force: \[ F = 1200 \, \mathrm{kg} \times (-7.33 \, \mathrm{m/s}^2) \approx -8796 \, \mathrm{N} \] The negative sign indicates that the force is acting in the direction opposite to the motion. Thus, the magnitude of the force required to bring the car to rest is approximately \( 8796 \, \mathrm{N} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad