What force is required to bring a 1200 kg car to rest from \( 22 \mathrm{~m} / \mathrm{s} \) in 3 seconds?
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To find the force required to bring the car to rest, we first need to determine the deceleration. We can use the formula: \[ a = \frac{{\Delta v}}{{\Delta t}} \] Here, \( \Delta v \) is the change in velocity, and \( \Delta t \) is the time interval. The initial velocity \( v_i = 22 \, \mathrm{m/s} \) and the final velocity \( v_f = 0 \, \mathrm{m/s} \). So: \[ \Delta v = v_f - v_i = 0 - 22 = -22 \, \mathrm{m/s} \] The time interval \( \Delta t = 3 \, \mathrm{s} \). Thus, the acceleration \( a \) is: \[ a = \frac{{-22 \, \mathrm{m/s}}}{{3 \, \mathrm{s}}} = -\frac{22}{3} \approx -7.33 \, \mathrm{m/s}^2 \] Now we can use Newton's second law, \( F = ma \), to find the force: \[ F = 1200 \, \mathrm{kg} \times (-7.33 \, \mathrm{m/s}^2) \approx -8796 \, \mathrm{N} \] The negative sign indicates that the force is acting in the direction opposite to the motion. Thus, the magnitude of the force required to bring the car to rest is approximately \( 8796 \, \mathrm{N} \).
