Pregunta
upstudy study bank question image url

A cylindrical vase has a diameter of 6 inches. At the bottom of the vase there are 9 marbles, each of diameter 3 inches. The vase is filled with water up to a height of 12 inches. Which of the following could be used to calculate the volume of water in the vase? \( \pi(3 \mathrm{in})^{2}(12 \mathrm{in})-1.5\left(\frac{4}{3} \pi(9 \mathrm{in})^{3}\right) \) \( \pi(12 \mathrm{in})^{2}(3 \mathrm{in})-1.5\left(\frac{4}{3} \pi(9 \mathrm{in})^{3}\right) \) \( \pi(3 \mathrm{in})^{2}(12 \mathrm{in})-9\left(\frac{4}{3} \pi(1.5 \mathrm{in})^{3}\right) \) \( \pi(12 \mathrm{in})^{2}(3 \mathrm{in})-9\left(\frac{4}{3} \pi(1.5 \mathrm{in})^{3}\right) \)

Ask by Graham Goodwin. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The volume of water in the vase can be calculated using the formula: \( \pi(3 \mathrm{in})^{2}(12 \mathrm{in}) - 9\left(\frac{4}{3} \pi(1.5 \mathrm{in})^{3}\right) \)

Solución

The vase is a cylinder with a diameter of 6 inches, so its radius is 3 inches. The water fills the vase to a height of 12 inches, giving a water volume (if there were no marbles) of   Volume_cylinder = π × (3 in)² × (12 in). Inside the vase are 9 spheres (marbles), each with a diameter of 3 inches, and therefore a radius of 1.5 inches. The volume of one marble is   Volume_sphere = (4/3)π × (1.5 in)³. Since there are 9 marbles, the total volume displaced by the marbles is   Total_volume_marbles = 9 × (4/3)π × (1.5 in)³. Thus, the volume of water in the vase is the cylindrical volume minus the volume occupied by the marbles:   Volume_water = π(3 in)²(12 in) – 9((4/3)π(1.5 in)³). Among the provided options, this is represented by:   π(3 in)²(12 in) – 9((4/3)π(1.5 in)³). This corresponds to the third option.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve this delightful puzzle, you first need to calculate the volume of water in the vase. The formula for the volume of a cylinder is \( \pi r^2 h \). With a diameter of 6 inches, the radius is 3 inches, and the height of the water is 12 inches. So, you calculate the volume of water as \( \pi(3 \, \text{in})^2(12 \, \text{in}) \). Next, consider the volume displaced by the marbles. Since each marble has a diameter of 3 inches, the radius is 1.5 inches. The volume of one marble is given by \( \frac{4}{3} \pi (1.5 \, \text{in})^3 \), and with 9 marbles, you multiply this volume by 9. To find the actual volume of water, you need to subtract the total volume occupied by the marbles from the initial volume of water in the vase. So, the correct option involves calculating these volumes while properly accounting for the displacement by the marbles! Fun yet mind-bending, right? If you're curious about the math behind the scenes, dive into resources on volume geometry; they're abundant with engaging visuals and examples! For a hands-on twist, consider conducting simple experiments with vases and marbles to visualize these principles—you might just become a volume wizard!

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad