Pregunta
upstudy study bank question image url

\( \rightarrow \mathrm{C} \mathrm{A} \) hmhco.com/ui/\#/assessment-view/live (8) Accessibility On your own paper, plot the points \( (3,60) \) and \( (-5,45) \). Find the distance between these two points. Round to the nearest tenth if necessary. Enter the correct answer in the box. \( \square \) units 7

Ask by Weston Edwards. in the United States
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The distance between the points \( (3, 60) \) and \( (-5, 45) \) is 17 units.

Solución

To find the distance between the two points \( (3, 60) \) and \( (-5, 45) \), we can use the distance formula, which is given by: \[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] where \( (x_1, y_1) \) and \( (x_2, y_2) \) are the coordinates of the two points. ### Step 1: Identify the coordinates Let: - \( (x_1, y_1) = (3, 60) \) - \( (x_2, y_2) = (-5, 45) \) ### Step 2: Substitute the coordinates into the distance formula Now, we can substitute the values into the formula: \[ d = \sqrt{((-5) - 3)^2 + (45 - 60)^2} \] ### Step 3: Calculate the differences Calculate \( x_2 - x_1 \) and \( y_2 - y_1 \): \[ x_2 - x_1 = -5 - 3 = -8 \] \[ y_2 - y_1 = 45 - 60 = -15 \] ### Step 4: Square the differences Now square these differences: \[ (-8)^2 = 64 \] \[ (-15)^2 = 225 \] ### Step 5: Add the squares Now add the squared differences: \[ 64 + 225 = 289 \] ### Step 6: Take the square root Now take the square root to find the distance: \[ d = \sqrt{289} = 17 \] ### Final Answer The distance between the points \( (3, 60) \) and \( (-5, 45) \) is \( 17 \) units. Thus, the answer to enter in the box is: \[ \boxed{17} \text{ units} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the distance between the points \( (3,60) \) and \( (-5,45) \), you can use the distance formula: \[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] Plugging in the coordinates: \( x_1 = 3, y_1 = 60, x_2 = -5, y_2 = 45 \): \[ d = \sqrt{((-5) - (3))^2 + (45 - 60)^2} = \sqrt{(-8)^2 + (-15)^2} = \sqrt{64 + 225} = \sqrt{289} = 17 \] So, the distance is \( 17 \) units. Plotting these points on paper is quite enlightening! It not only shows you the positions of the points in a graphical context but also helps in visualizing the straight line connecting them. When you plot them, (3, 60) is in the top right section of the graph, while (-5, 45) is in the bottom left quadrant. The slope of the line between these two points will give further insight into how steep that line is, creating a better understanding of the distance in the context of spatial relationships on a coordinate plane.

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad