Find the inverse of the following matrix, if possible. Reduce all fractions to lowest terms. \[ A=\left[\begin{array}{ccc}-2 & 0 & -3 \\ 3 & 4 & 3 \\ 1 & 1 & -2\end{array}\right] \] Answer Selecting an option will display any text boxes needed to complete your answer. Does this matrix have an inverse?
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To determine if the matrix \( A \) has an inverse, we need to calculate its determinant. A matrix has an inverse if and only if its determinant is non-zero. Let's calculate the determinant of \( A \): \[ A = \begin{bmatrix} -2 & 0 & -3 \\ 3 & 4 & 3 \\ 1 & 1 & -2 \end{bmatrix} \] The determinant can be calculated using the formula for a \( 3 \times 3 \) matrix: \[ \text{det}(A) = a(ei-fh) - b(dg-eh) + c(dh-eg) \] where \( a, b, c \) are the elements of the first row, and \( d, e, f, g, h, i \) are the other elements as follows: \[ \text{det}(A) = -2 \left(4 \cdot (-2) - 3 \cdot 1\right) - 0 + (-3)\left(3 \cdot 1 - 4 \cdot 1\right) \] \[ = -2 \left(-8 - 3\right) - 3 \cdot (-1) \] \[ = -2 \cdot (-11) + 3 \] \[ = 22 + 3 = 25 \] Since the determinant is 25 (not zero), the matrix \( A \) does have an inverse. To find the inverse, we can use the formula \( A^{-1} = \frac{1}{\text{det}(A)} \text{adj}(A) \), where \( \text{adj}(A) \) is the adjugate of \( A \). The adjugate can be determined by finding the matrix of cofactors and then transposing that matrix. Now that we know \( A \) is invertible, we can systematically calculate its inverse!
