Pregunta
upstudy study bank question image url

A square sheet of metal has sides of length 30 cm . A quadrant (one quarter of a circle) of radius 15 cm is cut from each of the four corne Sketch the shape that is left and find its perimeter.

Ask by Howell Riley. in Guyana
Jan 13,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

After removing four 15 cm-radius quadrants from a 30 cm square, the remaining shape has a perimeter of \( 30\pi \) centimeters, which is approximately 94.25 centimeters.

Solución

To solve this problem, let's break it down step by step. ### **1. Visualizing the Shape** You start with a **square sheet of metal** with each side measuring **30 cm**. From each of the four corners of this square, a **quadrant (one quarter of a circle)** with a **radius of 15 cm** is removed. ### **2. Sketching the Shape** - **Original Square:** Draw a square with each side measuring 30 cm. - **Removing Quadrants:** At each corner of the square, draw a quarter-circle with a radius of 15 cm and remove that quadrant. The resulting shape resembles a square with **smooth, rounded corners**. Each straight edge of the original square is effectively replaced by a curved edge from the quarter-circles. ### **3. Calculating the Perimeter** To find the perimeter of the remaining shape, consider the following: - **Original Perimeter:** The perimeter of the original square is: \[ 4 \times 30 \text{ cm} = 120 \text{ cm} \] - **Effect of Removing Quadrants:** - Each quadrant removed has a **radius of 15 cm**. - The length of each quarter-circle (per quadrant) is: \[ \frac{1}{4} \times 2\pi \times 15 \text{ cm} = \frac{30\pi}{4} \text{ cm} = 7.5\pi \text{ cm} \] - Since there are four quadrants removed, their total contribution to the perimeter is: \[ 4 \times 7.5\pi \text{ cm} = 30\pi \text{ cm} \] - **Remaining Perimeter:** - The straight edges of the square that remain after removing the quadrants effectively form a circle. - Hence, the **total perimeter** of the remaining shape is the same as the circumference of a circle with a **radius of 15 cm**: \[ \text{Perimeter} = 2\pi \times 15 \text{ cm} = 30\pi \text{ cm} \] ### **Final Answer** The perimeter of the remaining shape is \( 30\pi \) centimeters. **Approximately, this is:** \[ 30\pi \text{ cm} \approx 94.25 \text{ cm} \] ### **Sketch of the Shape** ![Rounded Square](https://i.imgur.com/KnSEsD3.png) *In the sketch, the square has smooth, rounded corners where each original corner has been replaced by a quadrant of a circle with a 15 cm radius.* **Answer:** After removing four 15 cm-radius quadrants, the remaining shape has a perimeter equal to 30 π cm.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Imagine a square, 30 cm on each side, where each corner has been gracefully rounded off by cutting out a 15 cm radius quadrant. What’s left is a charming shape that resembles a square with its corners replaced by smooth curves. To find the perimeter, we first calculate the perimeter of the original square, which is \(4 \times 30 \, \text{cm} = 120 \, \text{cm}\). Each of the four corners has a quadrant of a circle removed, which contributes a quarter of a circle’s circumference. The circumference of a full circle with a 15 cm radius is \(2\pi r = 2\pi \times 15 = 30\pi \, \text{cm}\). Thus, each quadrant contributes \( \frac{1}{4} \times 30\pi = 7.5\pi \, \text{cm}\), leading to a total circular contribution of \(4 \times 7.5\pi = 30\pi \, \text{cm}\). The total perimeter is then the original perimeter minus the straight sections of the square corners (which is \(4 \times \frac{15 \, \text{cm}}{2} = 30\, \text{cm}\)). Therefore, the final perimeter calculates to: \[ 120 \, \text{cm} - 30 \, \text{cm} + 30\pi \, \text{cm} \approx 120 - 30 + 94.25 = 184.25 \, \text{cm} \] So, the delightful new shape has a perimeter of approximately \(184.25 \, \text{cm}\).

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad