Pregunta

9. Evaluate the indefinite integral. (Use \( C \) for the constant of integration.) \[ \int \frac{a+b x^{5}}{\sqrt{6 a x+b x^{6}}} d x \]

Ask by Boyd Paul. in Bahrain
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The integral \( \int \frac{a+b x^{5}}{\sqrt{6 a x+b x^{6}}} d x \) equals \( \frac{1}{3}\sqrt{6ax+bx^{6}} + C \).

Solución

Calculate the integral \( \int \frac{a+b x^{5}}{\sqrt{6 a x+b x^{6}}} d x \). Evaluate the integral by following steps: - step0: Evaluate using substitution: \(\int \frac{a+bx^{5}}{\sqrt{6ax+bx^{6}}} dx\) - step1: Rewrite the expression: \(\int \frac{a+bx^{5}}{\left(6ax+bx^{6}\right)^{\frac{1}{2}}} dx\) - step2: Use the substitution \(dx=\frac{1}{6a+6bx^{5}} dt\) to transform the integral\(:\) \(\int \frac{a+bx^{5}}{\left(6ax+bx^{6}\right)^{\frac{1}{2}}}\times \frac{1}{6a+6bx^{5}} dt\) - step3: Simplify: \(\int \frac{1}{6\left(6ax+bx^{6}\right)^{\frac{1}{2}}} dt\) - step4: Use the substitution \(t=6ax+bx^{6}\) to transform the integral\(:\) \(\int \frac{1}{6t^{\frac{1}{2}}} dt\) - step5: Rewrite the expression: \(\int \frac{1}{6}\times \frac{1}{t^{\frac{1}{2}}} dt\) - step6: Use properties of integrals: \(\frac{1}{6}\times \int \frac{1}{t^{\frac{1}{2}}} dt\) - step7: Evaluate the integral: \(\frac{1}{6}\times \frac{t^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}\) - step8: Simplify: \(\frac{1}{6}\times 2t^{\frac{1}{2}}\) - step9: Multiply the numbers: \(\frac{1}{3}t^{\frac{1}{2}}\) - step10: Substitute back: \(\frac{1}{3}\left(6ax+bx^{6}\right)^{\frac{1}{2}}\) - step11: Simplify: \(\frac{1}{3}\sqrt{6ax+bx^{6}}\) - step12: Add the constant of integral C: \(\frac{1}{3}\sqrt{6ax+bx^{6}} + C, C \in \mathbb{R}\) The indefinite integral of \( \frac{a+b x^{5}}{\sqrt{6 a x+b x^{6}}} \) with respect to \( x \) is \( \frac{1}{3}\sqrt{6ax+bx^{6}} + C \), where \( C \) is the constant of integration.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To evaluate the indefinite integral \[ \int \frac{a + b x^{5}}{\sqrt{6 a x + b x^{6}}} \, dx, \] let's use a substitution. Set \[ u = 6 a x + b x^{6}. \] Then compute the derivative of \( u \): \[ \frac{du}{dx} = 6a + 6bx^{5}, \] which simplifies to \[ du = (6a + 6bx^{5}) dx = 6(a + bx^{5}) \, dx. \] Now we can express \( dx \): \[ dx = \frac{du}{6(a + bx^{5})}. \] Substituting in our integral, we have: \[ \int \frac{a + b x^{5}}{\sqrt{u}} \cdot \frac{du}{6(a + bx^{5})}. \] Notice that the \( (a + bx^{5}) \) terms cancel, leading to: \[ \frac{1}{6} \int \frac{1}{\sqrt{u}} \, du. \] Now, we can easily integrate this: \[ \int \frac{1}{\sqrt{u}} \, du = 2\sqrt{u} + C. \] Substituting back \( u = 6 a x + b x^{6} \), we find: \[ \frac{1}{6} \cdot 2\sqrt{6 a x + b x^{6}} + C = \frac{1}{3}\sqrt{6 a x + b x^{6}} + C. \] Thus, the final result for the indefinite integral is: \[ \int \frac{a + b x^{5}}{\sqrt{6 a x + b x^{6}}} \, dx = \frac{1}{3}\sqrt{6 a x + b x^{6}} + C. \]

preguntas relacionadas

\[ y=x^{3}, \quad 0 \leq x \leq 2 \] Step 1 We are asked to find the surface area of the curve defined by \( y=x^{3} \) rotated about the \( x \)-axis over the interv \( 0 \leq x \leq 2 \). Recall the following formula for the surface area of a function of \( x \) rotated about the \( x \)-axis. Note t as the curve rotates in a circular manner about the \( x \)-axis, the expression \( 2 \pi y \) is the circumference of radius and the radical measures the arc length that is the width of a band, \[ S=\int_{a}^{b} 2 \pi y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \] We begin by substituting \( y=x^{3} \) and its derivative in the surface area formula and simplifying, \[ \begin{aligned} S & \left.=\int_{0}^{2} 2 \pi\left(x^{3}\right) \sqrt{1+\left(\sqrt{3 x^{2}}\right.} \sqrt{3 x^{2}}\right)^{2} d x \\ & =\int_{0}^{2} 2 \pi\left(x^{3}\right) \sqrt{1+9} \sqrt[9]{ } x^{4} d x \end{aligned} \] Step 2 We have found the following integral for the surface area. \[ S=\int_{0}^{2} 2 \pi\left(x^{3}\right) \sqrt{1+9 x^{4}} d x \] To evaluate the integral we will first make the substitution \( u=1+9 x^{4} \). We also will need the following to complete the substitution. \[ \begin{array}{l} d u=36 x^{3} \\ x=0 \rightarrow u=1 \\ x=2 \rightarrow u=\square 14 \end{array} \] Step 3 We can now make the substitution \( u=1+(9 x)^{4} \) and evaluate the definite integral with respect to \( u \). \[ \begin{aligned} \int_{0}^{2} 2 \pi\left(x^{3}\right) \sqrt{1+(9 x)^{4}} d x & =\int_{1}^{145} 2 \pi \sqrt{u}\left(\frac{d u}{36}\right) \\ & =\frac{2 \pi}{36} \int_{1}^{145} \sqrt{u} d u \end{aligned} \] \[ =\frac{2 \pi}{36}\left[\frac{2}{3} u^{\frac{2}{3}}\right]_{1}^{145} \]
Step 1 We are asked to find the surface area of the curve defined by \( y=x^{3} \) rotated about the \( x \)-axis over the interval \( 0 \leq x \leq 2 \). Recall the following formula for the surface area of a function of \( x \) rotated about the \( x \)-axis. Note that as the curve rotates in a circular manner about the \( x \)-axis, the expression \( 2 \pi y \) is the circumference of radius \( y \) and the radical measures the arc length that is the width of a band. \[ S=\int_{a}^{b} 2 \pi y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \] We begin by substituting \( y=x^{3} \) and its derivative in the surface area formula and simplifying. \[ \begin{aligned} S & \left.=\int_{0}^{2} 2 \pi\left(x^{3}\right) \sqrt{1+\left(\sqrt{3 x^{2}}\right.} \sqrt{3 x^{2}}\right)^{2} d x \\ & =\int_{0}^{2} 2 \pi\left(x^{3}\right) \sqrt{1+9}, 9^{x^{4}} d x \end{aligned} \] Step 2 We have found the following integral for the surface area. \[ S=\int_{0}^{2} 2 \pi\left(x^{3}\right) \sqrt{1+9 x^{4}} d x \] To evaluate the integral we will first make the substitution \( u=1+9 x^{4} \). We also will need the following to complete the substitution. \[ \begin{array}{l} d u=36 x^{3} \\ x=0 \rightarrow u=1 \\ x=2 \rightarrow u=\square 146 x^{d x} \end{array} \] Step 3 We can now make the substitution \( u=1+(9 x)^{4} \) and evaluate the definite integral with respect to \( u \). \[ \begin{aligned} \int_{0}^{2} 2 \pi\left(x^{3}\right) \sqrt{1+(9 x)^{4}} d x & =\int_{1}^{145} 2 \pi \sqrt{u}\left(\frac{d u}{36}\right) \\ & =\frac{2 \pi}{36} \int_{1}^{145} \sqrt{u} d u \end{aligned} \] \[ =\frac{2 \pi}{36}\left[\frac{2}{3} u^{\frac{2}{3}}\right]_{1}^{145} \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad