Pregunta
The domain of \( h(x)=\sqrt{-x}+6 \) is \( (-\infty, 0] \) (Type your answer in interval notation.) The range of \( h(x)=\sqrt{-x}+6 \) is \( \square \). (Type your answer in interval notation.)
Ask by Marshall Cervantes. in the United States
Feb 26,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The range of \( h(x) = \sqrt{-x} + 6 \) is \( [6, \infty) \).
Solución
Since h(x) = √(-x) + 6, we first ensure the radicand is nonnegative:
-x ≥ 0 → x ≤ 0.
Thus, the domain is (-∞, 0].
For the range, note that √(-x) is always nonnegative. The minimum value occurs when:
√(-x) = 0 → h(x) = 0 + 6 = 6.
As x becomes more negative (approaches -∞), √(-x) increases without bound, leading to h(x) increasing without bound.
Therefore, the range of h(x) is [6, ∞).
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Bonus Knowledge
The function \( h(x) = \sqrt{-x} + 6 \) has a domain of \( (-\infty, 0] \) because the expression inside the square root must be non-negative, which is true for any \( x \) less than or equal to 0. To find the range, notice that as \( x \) approaches \( -\infty \), \( \sqrt{-x} \) becomes very large, leading \( h(x) \) to tend towards \( \infty \). When \( x = 0 \), \( h(x) = \sqrt{0} + 6 = 6 \). Thus, the range of \( h(x) \) is \( [6, \infty) \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium