Pregunta
upstudy study bank question image url

455) A triangle's bisector divides the opposite side into segments of 3 cm and 4 cm . If one of the triangle's sides is 5 cm , find the other side. 456) A triangle has a perimeter of 32 cm . A bisector divides one side into segments of 5 cm and 3 cm . Find the lengths of the triangle's sides.

Ask by Savage George. in Mongolia
Feb 11,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

For Problem 455, the triangle's sides are 5 cm, 20⁄3 cm, and 4 cm. For Problem 456, the triangle's sides are 15 cm, 9 cm, and 8 cm.

Solución

We will solve these two problems using the Angle Bisector Theorem. Recall that in any triangle, an angle’s bisector divides the opposite side into segments whose lengths are proportional to the lengths of the two sides containing the angle. That is, if in triangle ABC the bisector of angle A meets side BC at D, then   AB⁄AC = BD⁄DC. ────────────────────────────── Problem 455 A triangle’s bisector divides the opposite side into segments of 3 cm and 4 cm. (That is, if BD = 3 cm and DC = 4 cm.) One of the sides forming the bisected angle is 5 cm. (That is, either AB = 5 cm or AC = 5 cm.) Since the ratio of the sides equals the ratio of the segments, we have   AB⁄AC = 3⁄4. There are two cases to consider: Case 1. Suppose the given 5 cm side is the one corresponding to the “3‐part”, that is, let   AB = 5 cm. Then since   AB = 3k  and AC = 4k, we have 3k = 5, so k = 5⁄3. Hence,   AC = 4k = 4·(5⁄3) = 20⁄3 cm. Case 2. Alternatively, if the given 5 cm side is the one corresponding to the “4‐part”, let   AC = 5 cm. Then 4k = 5, so k = 5⁄4. Thus,   AB = 3k = 3·(5⁄4) = 15⁄4 cm. Because the problem simply states “one of the triangle’s sides is 5 cm” without specifying which, the answer could be given as follows: • If the 5 cm side corresponds to the segment of length 3 (so that AB = 5 cm), then the other side is 20⁄3 cm. • If the 5 cm side corresponds to the segment of length 4 (so that AC = 5 cm), then the other side is 15⁄4 cm. Typically, by listing the segments as 3 cm and 4 cm, many texts expect the ratio to be taken in that order. Hence, one common answer is: The unknown side is (5·4⁄3) = 20⁄3 cm. ────────────────────────────── Problem 456 A triangle has a perimeter of 32 cm. A bisector divides one side into segments of 5 cm and 3 cm. (So if the bisector is drawn from angle A to side BC, then we have BD = 5 cm and DC = 3 cm, and hence BC = 5 + 3 = 8 cm.) By the Angle Bisector Theorem, the sides adjacent to angle A satisfy   AB⁄AC = BD⁄DC = 5⁄3. Write   AB = 5k   and  AC = 3k. The perimeter is   AB + AC + BC = 5k + 3k + 8 = 8k + 8. Since the perimeter is 32 cm,   8k + 8 = 32  ⇒ 8k = 24  ⇒ k = 3. Thus, the sides are:   AB = 5k = 15 cm,   AC = 3k = 9 cm, and   BC = 8 cm. ────────────────────────────── Summary of Answers 455) When an angle’s bisector divides the opposite side into 3 cm and 4 cm:  • If the 5 cm side is the one corresponding to the 3‐part, the other side is 20⁄3 cm.  • (Alternatively, if the 5 cm side corresponds to the 4‐part, the other side is 15⁄4 cm.) A common answer is: 20⁄3 cm. 456) The sides of the triangle are 15 cm, 9 cm, and 8 cm. Choose the interpretation for Problem 455 that best fits the context.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

In the first scenario, you can easily use the angle bisector theorem, which states that the ratio of the lengths of the segments created by the bisector is equal to the ratio of the lengths of the other two sides of the triangle. Here, the segments are 3 cm and 4 cm, leading to the ratio of 3:4. Knowing one side is 5 cm, set up the proportion to find the other side, which comes out to be 6.67 cm. For the second triangle, with a perimeter of 32 cm and a bisector dividing one side into segments of 5 cm and 3 cm, you'll again use the angle bisector theorem. The sides of the triangle represent the ratio of 5:3. Letting x represent the length of the side opposite the 5 cm segment, you would set up the equation to solve for the lengths of each side. In this case, the sides of the triangle would be determined as 10 cm, 12 cm, and 10 cm after careful calculation!

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad