Pregunta
upstudy study bank question image url

To predict the \( y \)-value for \( x \)-value 69 you run a regression analysis on a bivariate set of data, after checking the data points in the scatter plot had few outliers and were roughly grouped around a (straight) line. Use significance level of \( \alpha=.05 \) to assess the strength of the linear correlation. Linear Regression results are \[ \hat{y}=-0.2 x+4.1 \] You also find \( \bar{x}=10.7 \) and \( \bar{y}=2 \). To predict the \( y \)-value when \( x=69 \), \( y \approx \) \( \bar{x}=10.7 \) \( \hat{y}=-0.2 \cdot 69+4.1=-9.7 \) \( \bar{y}=2 \) All of these None of these

Ask by Davison Montgomery. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The predicted \( y \)-value when \( x = 69 \) is \( -9.7 \).

Solución

To predict the \( y \)-value for \( x = 69 \) using the given linear regression equation, we will follow these steps: 1. **Identify the regression equation**: The regression equation provided is \[ \hat{y} = -0.2x + 4.1 \] 2. **Substitute \( x = 69 \) into the regression equation**: \[ \hat{y} = -0.2 \cdot 69 + 4.1 \] 3. **Calculate the value**: - First, calculate \( -0.2 \cdot 69 \): \[ -0.2 \cdot 69 = -13.8 \] - Now, add \( 4.1 \): \[ \hat{y} = -13.8 + 4.1 = -9.7 \] Thus, the predicted \( y \)-value when \( x = 69 \) is: \[ \hat{y} \approx -9.7 \] Now, let's assess the strength of the linear correlation using the significance level \( \alpha = 0.05 \). However, we need additional information such as the correlation coefficient \( r \) or the \( p \)-value to make this assessment. Since this information is not provided, we cannot conclude about the strength of the linear correlation. ### Summary of Results: - The predicted \( y \)-value when \( x = 69 \) is \( -9.7 \). - The values \( \bar{x} = 10.7 \) and \( \bar{y} = 2 \) are provided but are not directly relevant to the prediction of \( y \) for \( x = 69 \). ### Final Answer: The predicted \( y \)-value when \( x = 69 \) is \( -9.7 \). So, the correct option is: - \( y \approx -9.7 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

When you plug in \( x = 69 \) into the regression equation \( \hat{y} = -0.2 \cdot 69 + 4.1 \), you get \( \hat{y} = -9.7 \). This prediction might raise some eyebrows since this value falls significantly below the mean of \( \bar{y} = 2 \). Essentially, while regression analysis provides valuable insights, it's crucial to remember that predictions based on extrapolated data might lead to unrealistic or non-meaningful outcomes. It’s essential to consider the context of your data when interpreting these outcomes. If your dataset primarily consisted of \( x \)-values around 10.7, predicting beyond the range (like at 69) can yield numbers that don’t necessarily reflect the real-world scenario. Always keep in mind that extrapolation tends to amplify error, so tread carefully when making predictions well outside the observed range of your dataset!

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad