Pregunta
upstudy study bank question image url

\( 1 \leftarrow \) Scores of an IQ test have a bell-shaped distribution with a mean of 100 and a standard deviation of 17 . Use the empirical rule to determine the following (a) What percentage of people has an IQ score between 66 and 134 ? (b) What percentage of people has an IQ score less than 83 or greater than 117? (c) What percentage of people has an IQ score greater than 151 ?

Ask by Salinas Stewart. in the United States
Feb 05,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Approximately 95% of people have an IQ score between 66 and 134.**

Solución

To analyze the IQ scores using the **empirical rule** (also known as the 68-95-99.7 rule), we consider the properties of a normal (bell-shaped) distribution: - **68%** of the data falls within **±1 standard deviation** from the mean. - **95%** of the data falls within **±2 standard deviations** from the mean. - **99.7%** of the data falls within **±3 standard deviations** from the mean. Given: - **Mean (μ)** = 100 - **Standard Deviation (σ)** = 17 Let's address each part of the question: --- ### **(a) Percentage of people with an IQ score between 66 and 134** 1. **Calculate the number of standard deviations from the mean for both scores:** - **Lower bound (66):** \[ Z = \frac{66 - 100}{17} = \frac{-34}{17} = -2 \] - **Upper bound (134):** \[ Z = \frac{134 - 100}{17} = \frac{34}{17} = +2 \] 2. **Interpretation using the empirical rule:** - The range from **μ - 2σ** to **μ + 2σ** (i.e., 66 to 134) encompasses approximately **95%** of the population. --- ### **Answer to Part (a):** **Approximately 95% of people have an IQ score between 66 and 134.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

In a bell-shaped distribution, also known as a normal distribution, the empirical rule states that approximately 68% of the data falls within one standard deviation of the mean, about 95% within two standard deviations, and around 99.7% within three standard deviations. In this case, with a mean of 100 and a standard deviation of 17: (a) For an IQ score between 66 and 134, we calculate one standard deviation below the mean (100 - 17 = 83) and one standard deviation above the mean (100 + 17 = 117). Thus, the range of 66 (100 - 2*17) to 134 (100 + 2*17) covers two standard deviations. By the empirical rule, about 95% of people fall within this range. (b) The scores less than 83 (mean - 1 sd) and greater than 117 (mean + 1 sd) are considered "outside" the range of 68% in the middle. Since 68% of people score between 83 and 117, that leaves 32% outside of this range. However, since the normal distribution is symmetric, this means there are 16% below 83 and 16% above 117, for a total of 32%. (c) For scores greater than 151, we determine how many standard deviations this score is from the mean. The score of 151 is 3 standard deviations above the mean (100 + 3*17). According to the empirical rule, only about 0.15% of the population scores greater than 151, which means it's quite a rare occurrence!

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad