Pregunta
upstudy study bank question image url

Choose the words to finish the explanation of how you would show that points \( J, K \), and \( L \) form the vertices of a triangle, using coordinate geometry. Use the Distance Formula to find the lengths Choose...

Ask by Love George. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Use the Distance Formula to find the lengths of segments JK, KL, and LJ. If all distances are positive and the sum of any two distances is greater than the third, then points J, K, and L form a triangle.

Solución

To show that points J, K, and L form the vertices of a triangle using coordinate geometry, you can proceed as follows: Use the Distance Formula to find the lengths of segments JK, KL, and LJ. Then, check that all three distances are positive and that the sum of any two distances is greater than the third distance (the Triangle Inequality). If these conditions hold, the points are noncollinear and indeed form a triangle.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To show that points \( J, K, \) and \( L \) form the vertices of a triangle, use the Distance Formula to find the lengths of each side. The Distance Formula states that the distance \( d \) between two points \( (x_1, y_1) \) and \( (x_2, y_2) \) is given by \( d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \). Calculate the distances \( JK, KL, \) and \( LJ \). If these three distances are all positive and the sum of the lengths of any two sides exceeds the length of the third side, then the points form a triangle. Keep in mind that if any two of the distances are equal to the third, the points are collinear and do not form a triangle. Thus, ensuring you understand the triangle inequality theorem is crucial in this proof!

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad