Find the domain and range of \( y=\log _{8}(4-4 x) \). The domain is:
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To find the domain of the function \( y = \log_{8}(4 - 4x) \), we first need to ensure that the argument of the logarithm is positive. This means: \[ 4 - 4x > 0 \] Solving this inequality, we get: \[ 4 > 4x \quad \Rightarrow \quad 1 > x \quad \Rightarrow \quad x < 1 \] Additionally, since \( 4 - 4x \) cannot be zero, we check when it equals zero: \[ 4 - 4x = 0 \quad \Rightarrow \quad x = 1 \] Thus, the domain of the function is all real numbers \( x \) such that \( x < 1 \), or in interval notation: \[ \text{Domain: } (-\infty, 1) \] The range is determined by the properties of the logarithmic function. Since the argument \( (4 - 4x) \) decreases from positive values greater than 0 to just below 0 as \( x \) approaches 1, the logarithm will take on all real values. Therefore, the range is: \[ \text{Range: } (-\infty, \infty) \]
