Pregunta
upstudy study bank question image url

A basketball coach claims that the team's players commit, on average, no more than 10 fouls per game. Let \( \mu \) represent the team's average number of fouls per game. Another coach thinks that these players create more fouls. What is the null hypothesis, \( H_{0} \), for this situation? \( \mu<10 \) \( \mu \leq 10 \) \( \mu>10 \) \( \mu \geq 10 \) COMPLETE What is the alternative hypothesis, \( \mathrm{H}_{\mathrm{a}} \). for this situation? \( \mu<10 \) \( \mu>10 \) \( \mu=10 \) \( x \quad \mu=10 \) COMPLETE What type of significance test should be used for this situation? DONE \( \square \) a left-tailed test a two-tailed test a right-tailed test

Ask by Klein Vaughan. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- **Null Hypothesis (H₀):** μ ≤ 10 - **Alternative Hypothesis (Hₐ):** μ > 10 - **Significance Test:** Right-tailed test

Solución

The coach’s claim is that the team's players commit no more than 10 fouls per game, which is represented by μ ≤ 10. The opposing coach, who believes they commit more fouls, suggests that μ > 10. Thus: • The null hypothesis (H₀) is: μ ≤ 10 • The alternative hypothesis (Hₐ) is: μ > 10 • Since Hₐ is testing for an increase (i.e., “more fouls”), a right‐tailed test should be used.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

In this situation, the null hypothesis \( H_0 \) would be that the average number of fouls committed by the players is less than or equal to 10, which represents the coach's claim. Thus, \( H_0: \mu \leq 10 \) is the correct choice. The alternative hypothesis \( H_a \) will reflect the skepticism of the other coach, suggesting the average is more than 10, leading to \( H_a: \mu > 10 \). A right-tailed test is appropriate here as the alternative hypothesis is concerned with determining if the mean exceeds a specific value. Did you know that the concept of hypothesis testing in statistical analysis dates back to the early 20th century? Pioneers like Ronald Fisher helped lay the groundwork, creating methods that are essential for today's data analysis in fields ranging from psychology to sports! So, when you're evaluating those fouls, remember you're part of a long tradition of inquiry! If you're interested in diving deeper, consider exploring "The Art of Statistics: Learning from Data" by David Spiegelhalter. This fantastic read offers insights into the world of statistical thinking and its applications, perfect for those wanting to enhance their understanding of statistical methods in real-life scenarios. Plus, who knows, you might uncover how stats can make or break a team’s season!

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad