Pregunta
upstudy study bank question image url

Suppose that \( \$ 2000 \) is invested at an interest rate of \( 2.5 \% \) per year, compounded continuously. After how many years will the initial investment be doubled?

Ask by Weber King. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

It will take approximately 27.73 years for the initial investment to double.

Solución

For continuous compounding, the formula for the amount A accumulated after time t years is given by:   A = P * e^(rt) where:   P = initial principal,   r = annual interest rate (in decimal form),   t = time in years. We want the investment to double, so A = 2P. Plug in the values:   2P = P * e^(rt) Divide both sides by P (assuming P ≠ 0):   2 = e^(rt) Take the natural logarithm of both sides:   ln(2) = rt Solve for t:   t = ln(2) / r Substitute r = 0.025:   t = ln(2) / 0.025 Calculating this gives:   t ≈ 0.693147 / 0.025 ≈ 27.73 years Thus, it will take approximately 27.73 years for the initial investment to double.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find out how many years it will take for the initial investment of \$2000 to double at a continuously compounded interest rate of 2.5%, we can use the formula for continuous compounding, which is given by: \[ A = Pe^{rt} \] Where: - \( A \) is the amount of money accumulated after time \( t \), - \( P \) is the principal amount (the initial investment), - \( r \) is the annual interest rate (as a decimal), - \( t \) is the time the money is invested for in years, - \( e \) is the base of the natural logarithm, approximately equal to 2.71828. We want to double the initial investment, so: \[ A = 2P \] Plugging in the values we have: \[ 2P = Pe^{rt} \] Dividing both sides by \( P \) (assuming \( P \neq 0 \)): \[ 2 = e^{rt} \] Now substituting \( r = 0.025 \): \[ 2 = e^{0.025t} \] To solve for \( t \), we take the natural logarithm of both sides: \[ \ln(2) = 0.025t \] Now we can solve for \( t \): \[ t = \frac{\ln(2)}{0.025} \] Calculating \( t \): \[ t \approx \frac{0.693147}{0.025} \approx 27.72588 \] Rounding to two decimal places, it will take approximately \( 27.73 \) years for the initial investment to double.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad