Pregunta
upstudy study bank question image url

A conical tank has height 9 m and radius 3 m at the base. Water flows at a rate of \( 2 \mathrm{~m}^{3} / \mathrm{min} \). How fast is the water level rising when the level is 1 m and 2 m ? (Use symbolic notation and fractions where needed.) When the water level is 1 m , the water level is rising at a rate of When the water level is 2 m , the water level is rising at a rate of \( \frac{9}{2 \pi} \)

Ask by Evans Warren. in the United States
Mar 15,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

When the water level is 1 m, it's rising at \( \frac{18}{\pi} \) m/min. When the water level is 2 m, it's rising at \( \frac{9}{2\pi} \) m/min.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Beyond the Answer

To find how fast the water level is rising in a conical tank, we can use related rates in calculus. First, let's establish the relationship between the volume \( V \) of water in the cone and the height \( h \). The formula for the volume of a cone is: \[ V = \frac{1}{3} \pi r^2 h \] Given that the radius and height of the tank maintain a ratio (due to similar triangles), we have: \[ \frac{r}{h} = \frac{3}{9} \implies r = \frac{1}{3} h \] Substituting \( r \) into the volume formula, we get: \[ V = \frac{1}{3} \pi \left(\frac{1}{3} h\right)^2 h = \frac{1}{27} \pi h^3 \] Next, we differentiate the volume with respect to time \( t \): \[ \frac{dV}{dt} = \frac{1}{9} \pi h^2 \frac{dh}{dt} \] Given that \( \frac{dV}{dt} = 2 \, \text{m}^3/\text{min} \), we can plug in the values to find \( \frac{dh}{dt} \) for \( h = 1 \, \text{m} \) and \( h = 2 \, \text{m} \). **When \( h = 1 \, \text{m} \):** \[ 2 = \frac{1}{9} \pi (1)^2 \frac{dh}{dt} \implies 2 = \frac{1}{9} \pi \frac{dh}{dt} \implies \frac{dh}{dt} = \frac{18}{\pi} \, \text{m/min} \] **When \( h = 2 \, \text{m} \):** \[ 2 = \frac{1}{9} \pi (2)^2 \frac{dh}{dt} \implies 2 = \frac{4}{9} \pi \frac{dh}{dt} \implies \frac{dh}{dt} = \frac{18}{2 \pi} = \frac{9}{\pi} \, \text{m/min} \] Thus, at the water level of 1 m, the rate at which the water level is rising is \( \frac{18}{\pi} \, \text{m/min} \) and at 2 m, it is \( \frac{9}{\pi} \, \text{m/min} \). Sprinkle some fun facts: Water flows, not just in tanks but in rivers, lakes, and oceans, carving landscapes over time! How cool is that? Think of conical tanks as miniature mountains—natural water holders! And don't forget, when tackling problems like this, always double-check your units and conversions. A tiny slip in a basic measure could lead you to missing the heights that matter most. Happy calculating!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad