Pregunta
upstudy study bank question image url

The mass of a radioactive substance follows a continuous exponential decay model, with a decay rate parameter of per day. Find the half-life of this
substance (that is, the time it takes for one-half the original amount in a given sample of this substance to decay).
Note: This is a continuous exponential decay model.
Do not round any intermediate computations, and round your answer to the nearest hundredth.
days

Ask by Lindsey Clark. in the United States
Mar 31,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The half-life of the radioactive substance is approximately 11.95 days.

Solución

To find the half-life of a radioactive substance that follows a continuous exponential decay model, we can use the formula for exponential decay:
where:
  • is the amount of the substance at time ,
  • is the initial amount of the substance,
  • is the decay rate parameter,
  • is the time.
Given that the decay rate parameter is per day, we can convert this to a decimal by dividing by 100:
We want to find the half-life, which is the time it takes for one-half the original amount to decay. This means that at the half-life, .
Substitute into the exponential decay formula:
Simplify the equation:
To solve for , we can take the natural logarithm of both sides:
Now, we can solve for :
Let’s calculate the half-life using this formula.
Calculate the value by following steps:
  • step0: Calculate:
  • step1: Simplify:
  • step2: Rewrite the expression:
  • step3: Multiply by the reciprocal:
  • step4: Multiply the terms:
  • step5: Multiply the terms:
  • step6: Multiply the terms:

    The half-life of the radioactive substance is approximately 11.95 days.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the half-life of a radioactive substance with an exponential decay model, you use the formula:
where is the decay rate parameter expressed as a decimal. In your case, the decay rate is , or when converted to a decimal.
Now, substitute into the equation:
Calculating gives approximately .
Now, compute:
Therefore, the half-life of the substance is approximately days.
If you round to the nearest hundredth, the final answer is days.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad