Pregunta
upstudy study bank question image url

a. Find the length of a arc of a circle whose radius is 8 cm .
b. Explain why the arc length in part (a) is longer or shorter in centimeters if the radius had been 11 cm .
c. Find the arc length when the radius is increased to 11 cm .
a. The length of the arc is
(Simplify your answer. Type an exact answer, using as needed. Use integers or fractions for any numbers in

Ask by Ayala Ortiz. in the United States
Mar 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

  • Part a: The length of the arc with a radius of 8 cm is .
  • Part b: Increasing the radius from 8 cm to 11 cm makes the arc length longer.
  • Part c: The length of the arc with a radius of 11 cm is .

Solución

Let’s solve the problem step by step.

Part a: Find the length of a arc of a circle with radius 8 cm.

The formula for the arc length of a circle is given by:
where:
  • is the angle in degrees,
  • is the radius of the circle.
For this part:
Substituting these values into the formula:
Now, let’s simplify this expression.
Calculate the value by following steps:
  • step0: Calculate:
  • step1: Reduce the fraction:
  • step2: Multiply the terms:
  • step3: Multiply:

    The length of the arc with a radius of 8 cm is .

Part b: Explain why the arc length in part (a) is longer or shorter if the radius had been 11 cm.

The arc length is directly proportional to the radius of the circle. This means that if the radius increases, the arc length will also increase, and if the radius decreases, the arc length will decrease.
In this case, since the radius is increased from 8 cm to 11 cm, the arc length will be longer when the radius is 11 cm compared to when it was 8 cm.

Part c: Find the arc length when the radius is increased to 11 cm.

Using the same formula for arc length:
For this part:
Substituting these values into the formula:
Now, let’s simplify this expression.
Calculate the value by following steps:
  • step0: Calculate:
  • step1: Reduce the fraction:
  • step2: Multiply the terms:
  • step3: Multiply:

    The length of the arc with a radius of 11 cm is .

Summary of Results:

  • Part a: The length of the arc with a radius of 8 cm is .
  • Part b: The arc length is longer with a radius of 11 cm because arc length is directly proportional to the radius.
  • Part c: The length of the arc with a radius of 11 cm is .

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the length of a arc, we use the formula for arc length: , where is the angle in degrees and is the radius. For :
If the radius increases to 11 cm, we would expect the arc length to be longer. This is because arc length is directly proportional to the radius. When you increase the radius, you stretch the arc out further, just like how a larger circle has a longer circumference than a smaller one.
Now, for the arc length with a radius of 11 cm:

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad