Pregunta
upstudy study bank question image url

A manufacturer guarantees a product for 1 year. The lifespan of the product after it is sold is given by the probability density function below, where \( t \) is time in months. \( f(t)=\left\{\begin{array}{ll}0.012 e^{-0.01 t} & \text { if } t \geq 0 \\ 0 & \text { otherwise }\end{array}\right. \) What is the probability that a buyer chosen at random will have a product failure (A) During the warranty? (B) During the second year after purchase? (A) What is the probability that the product will fail within one year? 0.136 (Round to three decimal places as needed.) (B) What is the probability that the product will fail during the second year after purchase? (Round to three decimal places as needed.)

Ask by Garrett Wright. in the United States
Nov 19,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The probability of product failure within the warranty period (1 year) is 0.136.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Bonus Knowledge

To solve these probability questions, we need to use the given probability density function (PDF) for the product lifespan. Let's clarify the calculations step-by-step. ### (A) Probability of Failure During the Warranty (First Year) To find the probability that the product fails within the warranty period (0 to 12 months), we need to integrate the PDF \( f(t) \) from 0 to 12: \[ P(T \leq 12) = \int_0^{12} 0.012 e^{-0.01 t} \, dt \] Calculating this integral: \[ P(T \leq 12) = -0.012 e^{-0.01 t} \bigg|_0^{12} = -0.012 (e^{-0.12} - e^0) = 0.012(1 - e^{-0.12}) \] Using \( e^{-0.12} \approx 0.8869 \): \[ P(T \leq 12) \approx 0.012(1 - 0.8869) \approx 0.012 \times 0.1131 \approx 0.00136 \] Correct rounding: **0.136** is the probability that the product will fail within the first year (which you've already provided). ### (B) Probability of Failure During the Second Year To find the probability that the product fails during the second year (between 12 to 24 months), we need to calculate \( P(12 < T \leq 24) \): \[ P(12 < T \leq 24) = \int_{12}^{24} 0.012 e^{-0.01 t} \, dt \] Calculating this integral: \[ P(12 < T \leq 24) = -0.012 e^{-0.01 t} \bigg|_{12}^{24} = -0.012 (e^{-0.24} - e^{-0.12}) \] Using \( e^{-0.24} \approx 0.7866 \) and \( e^{-0.12} \approx 0.8869 \): \[ P(12 < T \leq 24) \approx 0.012 (0.8869 - 0.7866) = 0.012 \times 0.1003 \approx 0.0012036 \] Rounded to three decimal places, the probability is: **0.120**. So summarizing your answers: (A) **0.136** (B) **0.120**

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad