\( \int _{}^{}\frac{1}{2t^{2}+5} d t \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To tackle the integral \( \int \frac{1}{2t^{2}+5} dt \), we can use a substitution technique. First, factor out the constant from the denominator: \[ \int \frac{1}{2(t^{2} + \frac{5}{2})} dt = \frac{1}{2} \int \frac{1}{t^{2} + \frac{5}{2}} dt. \] Next, we recognize that we can convert this into a form suitable for the arctangent function. We can rewrite \(\frac{5}{2}\) as \((\sqrt{\frac{5}{2}})^2\), and then use the formula: \[ \int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C. \] Here, \(a = \sqrt{\frac{5}{2}}\). Now we can write: \[ \frac{1}{2} \int \frac{1}{t^{2} + \frac{5}{2}} dt = \frac{1}{2} \cdot \frac{1}{\sqrt{\frac{5}{2}}} \tan^{-1}\left(\frac{t}{\sqrt{\frac{5}{2}}}\right) + C. \] Doing the math gives us the final result: \[ \frac{1}{\sqrt{10}} \tan^{-1}\left(\frac{t\sqrt{2}}{\sqrt{5}}\right) + C. \] And there you have it, a nice neat answer! Happy integrating!
