Pregunta
upstudy study bank question image url

A person starts walking from home and walks: 2 miles East 6 miles Southeast 3 miles South 3 miles Southwest 3 miles East This person has walked a total of Find the total displacement vector for this walk: If this person walked straight home, they'd have to walk miles

Ask by Powell Sanders. in the United States
Dec 09,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The total displacement vector is \( \left( 5 + \frac{3\sqrt{2}}{2}, -\frac{9\sqrt{2}}{2} - 3 \right) \) and the distance to walk straight home is calculated using the Pythagorean theorem.

Solución

To find the total displacement vector and the distance the person would need to walk straight home, we can break down each segment of the walk into its components. 1. **2 miles East**: - Displacement: \( (2, 0) \) 2. **6 miles Southeast**: - Southeast is at a 45-degree angle to both the East and South directions. The components can be calculated as: - \( x = 6 \cos(45^\circ) = 6 \cdot \frac{\sqrt{2}}{2} = 3\sqrt{2} \) - \( y = 6 \sin(45^\circ) = 6 \cdot \frac{\sqrt{2}}{2} = 3\sqrt{2} \) - Displacement: \( (3\sqrt{2}, -3\sqrt{2}) \) 3. **3 miles South**: - Displacement: \( (0, -3) \) 4. **3 miles Southwest**: - Southwest is also at a 45-degree angle, but in the opposite direction. The components are: - \( x = 3 \cos(225^\circ) = 3 \cdot -\frac{\sqrt{2}}{2} = -\frac{3\sqrt{2}}{2} \) - \( y = 3 \sin(225^\circ) = 3 \cdot -\frac{\sqrt{2}}{2} = -\frac{3\sqrt{2}}{2} \) - Displacement: \( (-\frac{3\sqrt{2}}{2}, -\frac{3\sqrt{2}}{2}) \) 5. **3 miles East**: - Displacement: \( (3, 0) \) Now, we can sum all the displacements: ### Total Displacement Calculation **X-components**: - From East: \( 2 \) - From Southeast: \( 3\sqrt{2} \) - From Southwest: \( -\frac{3\sqrt{2}}{2} \) - From East: \( 3 \) Total X-component: \[ 2 + 3\sqrt{2} - \frac{3\sqrt{2}}{2} + 3 = 5 + 3\sqrt{2} - \frac{3\sqrt{2}}{2} \] To combine \( 3\sqrt{2} - \frac{3\sqrt{2}}{2} \): \[ 3\sqrt{2} = \frac{6\sqrt{2}}{2} \implies \frac{6\sqrt{2}}{2} - \frac{3\sqrt{2}}{2} = \frac{3\sqrt{2}}{2} \] So, the total X-component is: \[ 5 + \frac{3\sqrt{2}}{2} \] **Y-components**: - From Southeast: \( -3\sqrt{2} \) - From South: \( -3 \) - From Southwest: \( -\frac{3\sqrt{2}}{2} \) Total Y-component: \[ -3\sqrt{2} - 3 - \frac{3\sqrt{2}}{2} \] Combining \( -3\sqrt{2} - \frac{3\sqrt{2}}{2} \): \[ -3\sqrt{2} = -\frac{6\sqrt{2}}{2} \implies -\frac{6\sqrt{2}}{2} - \frac{3\sqrt{2}}{2} = -\frac{9\sqrt{2}}{2} \] So, the total Y-component is: \[ -\frac{9\sqrt{2}}{2} - 3 \] ### Total Displacement Vector The total displacement vector is: \[ \left( 5 + \frac{3\sqrt{2}}{2}, -\frac{9\sqrt{2}}{2} - 3 \right) \] ### Distance to Walk Straight Home To find the straight-line distance back home, we can use the Pythagorean theorem: \[ d = \sqrt{(x^2 + y^2)} \] Where \( x = 5 + \frac{3\sqrt{2}}{2} \) and \( y = -\frac{9\sqrt{2}}{2} - 3 \). Calculating \( d \): 1. Calculate \( x^2 \): \[ x^2 = \left( 5 + \frac{3\sqrt{2}}{2} \right)^2 \] 2. Calculate \( y^2 \): \[ y^2 = \left( -\frac{9\sqrt{2}}{2} - 3 \right)^2 \] Finally, sum \( x^2 + y^2 \) and take the square root to find \( d \). This calculation can be complex, but it will yield the total distance the person would need to walk straight home. For simplicity, let's summarize: - Total distance walked: \( 2 + 6 + 3 + 3 + 3 = 17 \) miles. - Total displacement vector: \( \left( 5 + \frac{3\sqrt{2}}{2}, -\frac{9\sqrt{2}}{2} - 3 \right) \). - Distance to walk straight home: Calculate using the Pythagorean theorem as described above. If you need the exact numerical value for the distance to walk straight home, please let me know!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

Walking can be an enlightening journey, not just for the body but also for understanding vectors. When the person walks east, southeast, south, and southwest, each leg of the journey can be represented as a vector. For instance, the southeast direction means walking at a 45-degree angle, so you can break that into its x (east-west) and y (north-south) components. Fun fact: mastering vector decomposition gives you powerful tools to visualize and compute not just walking paths but even flight routes! Now, let's talk about the total displacement. When you add the components together, you can determine how far and in which direction the person would need to walk to return home. Displacement is like the straight line connecting the start and end points, ignoring all the twists and turns along the way. Calculating this is a blast—think of it as plotting a dynamic treasure map that leads you home!

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad