Pregunta
Factor the following expression. \( 18 u^{9} x^{8}-24 u^{3} x^{4} y^{5} \)
Ask by Schneider Donnelly. in the United States
Jan 30,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The factored form of the expression is \(6u^{3}x^{4}(3u^{6}x^{4} - 4y^{5})\).
Solución
To factor the expression \( 18 u^{9} x^{8} - 24 u^{3} x^{4} y^{5} \), follow these steps:
1. **Identify the Greatest Common Factor (GCF) for the coefficients:**
- The coefficients are 18 and 24.
- The GCF of 18 and 24 is **6**.
2. **Identify the GCF for each variable:**
- For \( u \): The smallest exponent is \( u^3 \).
- For \( x \): The smallest exponent is \( x^4 \).
- The variable \( y \) only appears in the second term, so it doesn't contribute to the GCF.
3. **Factor out the GCF from each term:**
- **First Term:** \( 18 u^{9} x^{8} \div 6 u^{3} x^{4} = 3 u^{6} x^{4} \)
- **Second Term:** \( 24 u^{3} x^{4} y^{5} \div 6 u^{3} x^{4} = 4 y^{5} \)
4. **Write the factored expression:**
\[
6 u^{3} x^{4} \left( 3 u^{6} x^{4} - 4 y^{5} \right)
\]
**Final Factored Form:**
\[
6u^{3}x^{4}(3u^{6}x^{4} - 4y^{5})
\]
Answer: \(6u^{3}x^{4}(3u^{6}x^{4} - 4y^{5})\)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
To factor the expression \( 18 u^{9} x^{8}-24 u^{3} x^{4} y^{5} \), we start by identifying the greatest common factor (GCF) of the coefficients and the variable parts. The GCF of \( 18 \) and \( 24 \) is \( 6 \). For the variable parts, we have \( u^{3} \) as the lowest power of \( u \), and \( x^{4} \) as the lowest power of \( x \). Thus, we can factor out \( 6 u^{3} x^{4} \): \[ 6 u^{3} x^{4} (3 u^{6} x^{4} - 4 y^{5}) \] So, the factored form of the expression is \( 6 u^{3} x^{4} (3 u^{6} x^{4} - 4 y^{5}) \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium