Find all zeros of the function \( f(x)=4 x^{3}+32 x^{2}+76 x+48 \). Enter the zeros separated by commas.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To find the zeros of the function \( f(x) = 4x^3 + 32x^2 + 76x + 48 \), we can start by factoring out the greatest common factor, which is 4: \[ f(x) = 4(x^3 + 8x^2 + 19x + 12). \] Now, we need to find the roots of the cubic polynomial \( x^3 + 8x^2 + 19x + 12 \). We can attempt the Rational Root Theorem to find potential rational roots, which suggest trying \( x = -1, -2, -3, -4, -6, -12 \). Trying \( x = -3 \): \[ f(-3) = (-3)^3 + 8(-3)^2 + 19(-3) + 12 = -27 + 72 - 57 + 12 = 0. \] Thus, \( x = -3 \) is a root. Next, we can use synthetic division to divide \( x^3 + 8x^2 + 19x + 12 \) by \( x + 3 \): ``` -3 | 1 8 19 12 | -3 -15 -12 ------------------- 1 5 4 0 ``` This gives us \( x^2 + 5x + 4 \). Now we can factor \( x^2 + 5x + 4 \): \[ x^2 + 5x + 4 = (x + 1)(x + 4). \] Now we have the complete factorization: \[ f(x) = 4(x + 3)(x + 1)(x + 4). \] The zeros of the function are: \[ x + 3 = 0 \implies x = -3, \] \[ x + 1 = 0 \implies x = -1, \] \[ x + 4 = 0 \implies x = -4. \] Therefore, the function \( f(x) \) has zeros at: \[ \boxed{-3, -1, -4}. \]
