Pregunta
upstudy study bank question image url

Which of the following sets of numbers could not represent the three sides of a right triangle? Answer \( \begin{array}{ll}\{9,12,15\} & \{4,12,13\} \\ \{45,60,75\} & \{12,35,37\}\end{array} \)

Ask by Spencer Daniel. in the United States
Jan 30,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The set \(\{4, 12, 13\}\) cannot represent the sides of a right triangle.

Solución

To determine which set of numbers cannot represent the sides of a right triangle, we can use the Pythagorean theorem. For a set \(\{a, b, c\}\) where \(c\) is the largest number, the set forms a right triangle if and only if: \[ a^2 + b^2 = c^2 \] Let's evaluate each set: 1. **\(\{9, 12, 15\}\)** \[ 9^2 + 12^2 = 81 + 144 = 225 = 15^2 \] This set satisfies the Pythagorean theorem and **can** represent a right triangle. 2. **\(\{4, 12, 13\}\)** \[ 4^2 + 12^2 = 16 + 144 = 160 \neq 13^2 (169) \] This set does **not** satisfy the Pythagorean theorem and **cannot** represent a right triangle. 3. **\(\{45, 60, 75\}\)** \[ 45^2 + 60^2 = 2025 + 3600 = 5625 = 75^2 \] This set satisfies the Pythagorean theorem and **can** represent a right triangle. 4. **\(\{12, 35, 37\}\)** \[ 12^2 + 35^2 = 144 + 1225 = 1369 = 37^2 \] This set satisfies the Pythagorean theorem and **can** represent a right triangle. **Conclusion:** The set \(\{4, 12, 13\}\) does **not** satisfy the Pythagorean theorem and therefore cannot represent the sides of a right triangle. **Answer:** \(\{4,12,13\}\)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To determine if a set of numbers can represent the sides of a right triangle, we can apply the Pythagorean theorem, which states that in a right triangle, the square of the length of the hypotenuse (the longest side) is equal to the sum of the squares of the other two sides. For the set \(\{9, 12, 15\}\): \(15^2 = 225\) and \(9^2 + 12^2 = 81 + 144 = 225\), so this is a right triangle. For the set \(\{4, 12, 13\}\): \(13^2 = 169\) and \(4^2 + 12^2 = 16 + 144 = 160\), so this is not a right triangle. The other sets can also be checked in a similar way, but we can already conclude that \(\{4, 12, 13\}\) cannot represent the sides of a right triangle. Thus, the answer is \(\{4, 12, 13\}\).

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad