Responder
Untuk memaksimalkan pendapatan, perusahaan harus memproduksi 4.8 unit meja dan 2.4 unit lemari, dengan total pendapatan maksimum Rp. 3,840,000.
Solución
Untuk menyelesaikan masalah ini, kita akan merumuskan model pemrograman linier (LP) berdasarkan informasi yang diberikan. Berikut adalah langkah-langkahnya:
### Langkah 1: Menentukan Variabel Keputusan
Mari kita definisikan variabel keputusan sebagai berikut:
- \( x_1 \): jumlah meja yang diproduksi
- \( x_2 \): jumlah lemari yang diproduksi
### Langkah 2: Menentukan Fungsi Tujuan
Fungsi tujuan adalah untuk memaksimalkan pendapatan. Pendapatan dari meja dan lemari dapat dinyatakan sebagai:
\[
Z = 400000x_1 + 800000x_2
\]
di mana \( Z \) adalah total pendapatan.
### Langkah 3: Menentukan Kendala
Kita memiliki tiga kendala berdasarkan sumber daya yang tersedia:
1. **Kendala Papan**:
\[
3x_1 + 4x_2 \leq 24
\]
2. **Kendala Cat**:
\[
2x_1 + 1x_2 \leq 12
\]
3. **Kendala Buruh**:
\[
1x_1 + 3x_2 \leq 15
\]
### Langkah 4: Menentukan Kendala Non-negatif
Kita juga harus memastikan bahwa jumlah meja dan lemari yang diproduksi tidak negatif:
\[
x_1 \geq 0
\]
\[
x_2 \geq 0
\]
### Model Pemrograman Linier
Dengan semua informasi di atas, kita dapat merumuskan model LP sebagai berikut:
**Maksimalkan**:
\[
Z = 400000x_1 + 800000x_2
\]
**Dengan kendala**:
\[
3x_1 + 4x_2 \leq 24
\]
\[
2x_1 + 1x_2 \leq 12
\]
\[
1x_1 + 3x_2 \leq 15
\]
\[
x_1 \geq 0
\]
\[
x_2 \geq 0
\]
### Langkah 5: Menentukan Solusi Optimal dengan Metode Grafis
Untuk menentukan solusi optimal, kita akan menggunakan metode grafis. Kita akan menggambar grafik dari kendala-kendala tersebut dan mencari titik potong yang memberikan nilai maksimum untuk fungsi tujuan.
Mari kita selesaikan sistem kendala ini untuk menemukan titik potong dan solusi optimal.
Saya akan menghitung titik potong dari kendala-kendala tersebut.
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}2x_{1}+x_{2}=12\\x_{1}+3x_{2}=15\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}x_{2}=12-2x_{1}\\x_{1}+3x_{2}=15\end{array}\right.\)
- step2: Substitute the value of \(x_{2}:\)
\(x_{1}+3\left(12-2x_{1}\right)=15\)
- step3: Simplify:
\(-5x_{1}+36=15\)
- step4: Move the constant to the right side:
\(-5x_{1}=15-36\)
- step5: Subtract the numbers:
\(-5x_{1}=-21\)
- step6: Change the signs:
\(5x_{1}=21\)
- step7: Divide both sides:
\(\frac{5x_{1}}{5}=\frac{21}{5}\)
- step8: Divide the numbers:
\(x_{1}=\frac{21}{5}\)
- step9: Substitute the value of \(x_{1}:\)
\(x_{2}=12-2\times \frac{21}{5}\)
- step10: Calculate:
\(x_{2}=\frac{18}{5}\)
- step11: Calculate:
\(\left\{ \begin{array}{l}x_{1}=\frac{21}{5}\\x_{2}=\frac{18}{5}\end{array}\right.\)
- step12: Check the solution:
\(\left\{ \begin{array}{l}x_{1}=\frac{21}{5}\\x_{2}=\frac{18}{5}\end{array}\right.\)
- step13: Rewrite:
\(\left(x_{1},x_{2}\right) = \left(\frac{21}{5},\frac{18}{5}\right)\)
Solve the system of equations \( 3x_1 + 4x_2 = 24; 2x_1 + x_2 = 12 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}3x_{1}+4x_{2}=24\\2x_{1}+x_{2}=12\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}3x_{1}+4x_{2}=24\\x_{2}=12-2x_{1}\end{array}\right.\)
- step2: Substitute the value of \(x_{2}:\)
\(3x_{1}+4\left(12-2x_{1}\right)=24\)
- step3: Simplify:
\(-5x_{1}+48=24\)
- step4: Move the constant to the right side:
\(-5x_{1}=24-48\)
- step5: Subtract the numbers:
\(-5x_{1}=-24\)
- step6: Change the signs:
\(5x_{1}=24\)
- step7: Divide both sides:
\(\frac{5x_{1}}{5}=\frac{24}{5}\)
- step8: Divide the numbers:
\(x_{1}=\frac{24}{5}\)
- step9: Substitute the value of \(x_{1}:\)
\(x_{2}=12-2\times \frac{24}{5}\)
- step10: Calculate:
\(x_{2}=\frac{12}{5}\)
- step11: Calculate:
\(\left\{ \begin{array}{l}x_{1}=\frac{24}{5}\\x_{2}=\frac{12}{5}\end{array}\right.\)
- step12: Check the solution:
\(\left\{ \begin{array}{l}x_{1}=\frac{24}{5}\\x_{2}=\frac{12}{5}\end{array}\right.\)
- step13: Rewrite:
\(\left(x_{1},x_{2}\right) = \left(\frac{24}{5},\frac{12}{5}\right)\)
Solve the system of equations \( 3x_1 + 4x_2 = 24; x_1 + 3x_2 = 15 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}3x_{1}+4x_{2}=24\\x_{1}+3x_{2}=15\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}3x_{1}+4x_{2}=24\\x_{1}=15-3x_{2}\end{array}\right.\)
- step2: Substitute the value of \(x_{1}:\)
\(3\left(15-3x_{2}\right)+4x_{2}=24\)
- step3: Simplify:
\(45-5x_{2}=24\)
- step4: Move the constant to the right side:
\(-5x_{2}=24-45\)
- step5: Subtract the numbers:
\(-5x_{2}=-21\)
- step6: Change the signs:
\(5x_{2}=21\)
- step7: Divide both sides:
\(\frac{5x_{2}}{5}=\frac{21}{5}\)
- step8: Divide the numbers:
\(x_{2}=\frac{21}{5}\)
- step9: Substitute the value of \(x_{2}:\)
\(x_{1}=15-3\times \frac{21}{5}\)
- step10: Calculate:
\(x_{1}=\frac{12}{5}\)
- step11: Calculate:
\(\left\{ \begin{array}{l}x_{1}=\frac{12}{5}\\x_{2}=\frac{21}{5}\end{array}\right.\)
- step12: Check the solution:
\(\left\{ \begin{array}{l}x_{1}=\frac{12}{5}\\x_{2}=\frac{21}{5}\end{array}\right.\)
- step13: Rewrite:
\(\left(x_{1},x_{2}\right) = \left(\frac{12}{5},\frac{21}{5}\right)\)
Solve the system of equations \( 3x_1 + 4x_2 = 24; 2x_1 + x_2 = 12; x_1 + 3x_2 = 15 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}3x_{1}+4x_{2}=24\\2x_{1}+x_{2}=12\\x_{1}+3x_{2}=15\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}3x_{1}+4x_{2}=24\\x_{2}=12-2x_{1}\\x_{1}+3x_{2}=15\end{array}\right.\)
- step2: Substitute the value of \(x_{2}:\)
\(\left\{ \begin{array}{l}3x_{1}+4\left(12-2x_{1}\right)=24\\x_{1}+3\left(12-2x_{1}\right)=15\end{array}\right.\)
- step3: Simplify:
\(\left\{ \begin{array}{l}-5x_{1}+48=24\\-5x_{1}+36=15\end{array}\right.\)
- step4: Solve the equation:
\(\left\{ \begin{array}{l}x_{1}=\frac{24}{5}\\-5x_{1}+36=15\end{array}\right.\)
- step5: Substitute the value of \(x_{1}:\)
\(-5\times \frac{24}{5}+36=15\)
- step6: Simplify:
\(12=15\)
- step7: Calculate:
\(\left\{ \begin{array}{l}x_{1} \in \varnothing \\x_{2} \in \varnothing \end{array}\right.\)
- step8: Rewrite:
\((x_{1}, x_{2}) \in \varnothing\)
Setelah menghitung titik potong dari kendala-kendala yang ada, kita mendapatkan hasil sebagai berikut:
1. **Titik potong antara kendala papan dan cat**:
\[
(x_1, x_2) = \left(\frac{24}{5}, \frac{12}{5}\right) \quad \text{atau} \quad (4.8, 2.4)
\]
2. **Titik potong antara kendala papan dan buruh**:
\[
(x_1, x_2) = \left(\frac{12}{5}, \frac{21}{5}\right) \quad \text{atau} \quad (2.4, 4.2)
\]
3. **Titik potong antara kendala cat dan buruh**:
\[
(x_1, x_2) = \left(\frac{21}{5}, \frac{18}{5}\right) \quad \text{atau} \quad (4.2, 3.6)
\]
### Langkah 6: Memeriksa Titik Potong dalam Kendala
Sekarang kita perlu memeriksa apakah titik-titik potong ini memenuhi semua kendala yang ada. Kita akan memeriksa setiap titik potong:
1. **Titik (4.8, 2.4)**:
- Kendala papan: \(3(4.8) + 4(2.4) = 14.4 + 9.6 = 24\) (memenuhi)
- Kendala cat: \(2(4.8) + 1(2.4) = 9.6 + 2.4 = 12\) (memenuhi)
- Kendala buruh: \(1(4.8) + 3(2.4) = 4.8 + 7.2 = 12\) (memenuhi)
2. **Titik (2.4, 4.2)**:
- Kendala papan: \(3(2.4) + 4(4.2) = 7.2 + 16.8 = 24\) (memenuhi)
- Kendala cat: \(2(2.4) + 1(4.2) = 4.8 + 4.2 = 9\) (tidak memenuhi)
3. **Titik (4.2, 3.6)**:
- Kendala papan: \(3(4.2) + 4(3.6) = 12.6 + 14.4 = 27\) (tidak memenuhi)
- Kendala cat: \(2(4.2) + 1(3.6) = 8.4 + 3.6 = 12\) (memenuhi)
- Kendala buruh: \(1(4.2) + 3(3.6) = 4.2 + 10.8 = 15\) (memenuhi)
### Langkah 7: Menghitung Nilai Fungsi Tujuan
Dari hasil di atas, hanya titik (4.8, 2.4) dan (2.4, 4.2) yang memenuhi kendala. Namun, hanya titik (4.8, 2.4) yang memenuhi semua kendala.
Mari kita hitung nilai fungsi tujuan untuk titik (4.8, 2.4):
\[
Z = 400000(4.8) + 800000(2.4) = 1920000 + 1920000 = 3840000
\]
### Kesimpulan
Solusi optimal untuk masalah ini adalah memproduksi:
- **4.8 unit meja**
- **2.4 unit lemari**
Dengan total pendapatan maksimum sebesar **Rp. 3,840,000**.
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución