Pregunta
upstudy study bank question image url

Which of the following would show that the diagonals of quadrilateral \( A B C D \) on the coordinate plane bisect each other? A. Show that slope of \( \overline{A C}= \) the slope of \( \overline{B D} \). B. Show that \( A C=B D \). C. Show that the midpoint of \( \overline{A C} \) is the same as the midpoint of \( \overline{B D} \). Show that (slope of \( \overline{A C} \) )(slope of \( \overline{B D} \) ) \( =-1 \). D.

Ask by Black Spencer. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To show that the diagonals of quadrilateral \( ABCD \) bisect each other, you need to demonstrate that the midpoints of diagonals \( AC \) and \( BD \) are the same.

Solución

To determine which option shows that the diagonals of quadrilateral \( ABCD \) bisect each other, we need to understand the concept of bisecting diagonals. When two segments bisect each other, it means that their midpoints are the same. Therefore, we need to find the option that confirms that the midpoints of the diagonals \( AC \) and \( BD \) are equal. Let's analyze the options: A. **Show that slope of \( \overline{A C} = \) the slope of \( \overline{B D} \)**: This only shows that the lines are parallel, not that they bisect each other. B. **Show that \( AC = BD \)**: This indicates that the lengths of the diagonals are equal, but it does not imply that they bisect each other. C. **Show that the midpoint of \( \overline{A C} \) is the same as the midpoint of \( \overline{B D} \). Show that (slope of \( \overline{A C} \) )(slope of \( \overline{B D} \)) \( = -1 \)**: The first part of this option confirms that the midpoints are the same, which is necessary for the diagonals to bisect each other. The second part about the slopes being negative reciprocals indicates that the lines are perpendicular, but it is not necessary for the diagonals to bisect each other. D. **(Not provided)**: We cannot evaluate this option. Based on the analysis, the correct answer is: **C. Show that the midpoint of \( \overline{A C} \) is the same as the midpoint of \( \overline{B D} \).** This confirms that the diagonals bisect each other.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To show that the diagonals of quadrilateral \( A B C D \) bisect each other, you would want to use the concept of midpoints. Specifically, option C is the way to go! If the midpoints of both diagonals \( \overline{A C} \) and \( \overline{B D} \) are the same, it means they intersect at that midpoint, confirming that the diagonals bisect each other. In coordinate geometry, calculating the midpoint is straightforward! You simply average the x-coordinates and the y-coordinates of the endpoints. So for diagonal \( \overline{A C} \), the midpoint can be found using \( M = \left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right) \). If you find that the midpoints of both diagonals are the same, voilà, you’ve proven they bisect each other!

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad