Pregunta
upstudy study bank question image url

In triangle is 3 cm long and is 5 cm long. According to the Triangle
Inequality Theorem, which two lengths are possible lengths of ? (1 point)



Ask by Schultz Floyd. in the United States
Mar 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The possible lengths for are cm and cm.

Solución

We are given that in triangle :
  • cm
  • cm
  • Let cm.
By the Triangle Inequality Theorem, the sum of the lengths of any two sides must be greater than the length of the third side. Therefore, we have three inequalities:
  1. implies or .
  2. implies or .
  3. implies which simplifies to (this inequality is automatically satisfied since is positive).
Combining the first two nontrivial inequalities, we obtain:
Now, we check the given possible lengths:
  • cm satisfies .
  • cm satisfies .
  • cm does not satisfy (it is equal to 2, not greater than 2).
  • cm does not satisfy .
Thus, the possible lengths for are cm and cm.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To determine the possible lengths of in triangle , we can apply the Triangle Inequality Theorem. This theorem states that the sum of the lengths of any two sides of a triangle must be greater than the length of the third side.
Let be denoted as . According to the Triangle Inequality Theorem:
  1. implies or .
  2. implies or .
  3. implies or (which doesn’t provide any new information since lengths are positive).
From these inequalities, we can conclude that must satisfy . Therefore, the possible lengths for are cm and cm. So the correct options are:

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad