Pregunta
upstudy study bank question image url

Let \( n \) be a positive odd integer. Determine the greatest number of possible imaginary zeros of \( f(x)=x^{n}-1 \). The greatest number of possible imaginary zeros is

Ask by Schultz Salinas. in the United States
Mar 16,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

For a positive odd integer \( n \), the polynomial \( f(x) = x^n - 1 \) has \( n-1 \) imaginary zeros.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Extra Insights

To find the greatest number of possible imaginary zeros of the function \( f(x) = x^n - 1 \) where \( n \) is a positive odd integer, we start by recognizing that the zeros of this polynomial correspond to the \( n \)-th roots of unity, which are given by the formula: \[ x_k = e^{2\pi i k/n} \] for \( k = 0, 1, 2, \ldots, n-1 \). These roots are all located on the unit circle in the complex plane. Among these roots, the imaginary zeros are the ones that lie exclusively on the imaginary axis, i.e., where \( x = iy \). For \( e^{2\pi i k/n} \) to be purely imaginary, the cosine component must be zero, which occurs when: \[ \cos(2\pi k/n) = 0 \] This happens when: \[ 2\pi k/n = \frac{\pi}{2} + m\pi \quad (m \in \mathbb{Z}) \] Simplifying this, we find that: \[ k = \frac{n}{4} + \frac{mn}{2} \] Since \( n \) is an odd integer, the two relevant values of \( k \) that yield purely imaginary roots are \( k = \frac{n}{4} \) (not possible since \( n/4 \) is non-integer) and \( k = \frac{3n}{4} \) (not possible since \( 3n/4 \) is also non-integer). However, we can specifically examine \( n = 2m + 1 \) (where \( m \) is a non-negative integer). Analyzing separately: - For \( n = 1 \), \( x^{1}-1 = 0 \) has 0 imaginary roots. - For \( n = 3 \), \( x^{3}-1 \) has \( \omega, -\omega, 1 \) where \( \omega = e^{2\pi i / 3} \), which include 1 imaginary root \( \omega^1 = e^{2\pi i/3} \). - For \( n = 5 \), \( x^{5}-1 \) includes roots that are \( e^{2\pi i k/5} \), which gives one imaginary root (\( k=2 \rightarrow \omega^2 \)). - Extending this, with \( n = 7, 9, \) etc. still yields only those two distinct rotations \( \frac{n}{4} \) or \( \frac{3n}{4} \) which correlate to 0 or 2 roots. Consequently, we can conclude that: The greatest number of possible imaginary zeros of \( f(x)=x^{n}-1 \) for odd \( n \) is always 2, achieved with the rotations corresponding to \( x = i \) and \( x = -i \), representing the two opposite points on the unit circle. Thus, the answer is: \[ \boxed{2} \]

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad