Pregunta
upstudy study bank question image url

Two coins are tossed. Assume that each event is equally likely to occur.
a) Use the counting principle to determine the number of sample points in the sample space.
b) Construct a tree diagram and list the sample space.
c) Determine the probability that no tails are tossed.
d) Determine the probability that exactly one tail is tossed.
e) Determine the probability that two tails are tossed.
f) Determine the probability that at least one tail is tossed.

Ask by Johnson Chang. in the United States
Mar 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a) There are 4 possible outcomes when two coins are tossed.
b) The sample space is: {HH, HT, TH, TT}.
c) The probability of no tails is 1/4.
d) The probability of exactly one tail is 1/2.
e) The probability of two tails is 1/4.
f) The probability of at least one tail is 3/4.

Solución

a)
Each coin has 2 outcomes (Heads or Tails), so by the counting principle, the number of sample points is
b)
We can construct a tree diagram as follows:
  1. First coin toss:
     - Heads (H)
     - Tails (T)
  2. Second coin toss for each branch:
     - If first toss is H: second toss can be H or T → outcomes: HH, HT.
     - If first toss is T: second toss can be H or T → outcomes: TH, TT.
Thus, the sample space is:
c)
No tails tossed means both coins show Heads. There is 1 favorable outcome (HH) out of 4. Therefore, the probability is
d)
Exactly one tail tossed corresponds to the outcomes HT and TH. There are 2 favorable outcomes. Thus, the probability is
e)
Two tails tossed corresponds to the outcome TT only. There is 1 favorable outcome. Thus, the probability is
f)
At least one tail tossed means we include outcomes with one tail or two tails: HT, TH, TT. There are 3 favorable outcomes. Thus, the probability is

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

a) Using the counting principle, each coin has 2 possible outcomes: Heads (H) or Tails (T). When tossing two coins, you multiply the number of outcomes for each coin: 2 (for the first coin) × 2 (for the second coin) = 4 sample points in the sample space.
b) The tree diagram for tossing two coins looks like this:
  • For Coin 1:
    • H
      • Coin 2: H
      • Coin 2: T
    • T
      • Coin 2: H
      • Coin 2: T
This leads to the sample space: {HH, HT, TH, TT}.
c) The probability of getting no tails (i.e., getting HH) is calculated by the formula: P(no tails) = Number of favorable outcomes / Total outcomes = 1/4, since there’s only 1 way to get no tails out of the 4 possible outcomes.
d) To find the probability of getting exactly one tail (HT or TH), we count the favorable outcomes. There are 2 outcomes (HT and TH) that result in exactly one tail. Thus, P(exactly one tail) = Number of favorable outcomes / Total outcomes = 2/4 = 1/2.
e) The probability of tossing two tails (TT) is straightforward. There is only 1 favorable outcome (TT) out of 4 possible outcomes. Therefore, P(two tails) = 1/4.
f) To determine the probability of getting at least one tail, we can find this by subtracting the probability of getting no tails from 1. So, P(at least one tail) = 1 - P(no tails) = 1 - 1/4 = 3/4. In terms of outcomes, this includes HT, TH, and TT.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad