Pregunta
upstudy study bank question image url

Test the claim that the proportion of men who own cats is larger than \( 10 \% \) at the .05 significance level. The null and alternative hypothesis would be: \( \begin{array}{l}H_{0}: p=0.1 \quad H_{0}: \mu=0.1 \quad H_{0}: p=0.1 \quad H_{0}: \mu=0.1 \quad H_{0}: \mu=0.1 \quad H_{0}: p=0.1 \\ H_{1}: p<0.1 \quad H_{1}: \mu \neq 0.1 \quad H_{1}: p>0.1 \quad H_{1}: \mu>0.1 \quad H_{1}: \mu<0.1 \quad H_{1}: p \neq 0.1 \\ \text { The test is: } \\ \text { right-tailed left-tailed two-tailed }\end{array} \)

Ask by Wilson Bond. in the United States
Jan 28,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Hypotheses:** - **Null Hypothesis (\( H_0 \))**: The proportion of men who own cats is equal to \( 10\% \) (\( p = 0.1 \)). - **Alternative Hypothesis (\( H_1 \))**: The proportion of men who own cats is greater than \( 10\% \) (\( p > 0.1 \)). **Type of Test**: Right-tailed

Solución

To test the claim that the proportion of men who own cats is **larger** than \( 10\% \) at the \( \alpha = 0.05 \) significance level, we need to establish the appropriate hypotheses and determine the type of test to perform. ### **Hypotheses** 1. **Null Hypothesis (\( H_0 \))**: This represents the statement of no effect or status quo. In this case, it asserts that the proportion of men who own cats is equal to \( 10\% \). \[ H_0: p = 0.1 \] 2. **Alternative Hypothesis (\( H_1 \))**: This represents the claim we want to test, which states that the proportion is **greater** than \( 10\% \). \[ H_1: p > 0.1 \] ### **Type of Test** Since the alternative hypothesis is testing whether the proportion is **greater** than a specific value, this is a **right-tailed** test. ### **Summary** - **Null Hypothesis (\( H_0 \))**: \( p = 0.1 \) - **Alternative Hypothesis (\( H_1 \))**: \( p > 0.1 \) - **Type of Test**: Right-tailed ### **Steps for the Test** 1. **Calculate the Test Statistic**: \[ z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \] where: - \( \hat{p} \) = Sample proportion - \( p_0 \) = Hypothesized population proportion (\( 0.1 \)) - \( n \) = Sample size 2. **Determine the Critical Value**: - For a right-tailed test at \( \alpha = 0.05 \), the critical \( z \)-value is approximately \( 1.645 \). 3. **Make a Decision**: - If \( z \) > \( 1.645 \), reject \( H_0 \). - Otherwise, do not reject \( H_0 \). 4. **Conclusion**: - Based on the test statistic and critical value, conclude whether there is sufficient evidence to support the claim that the proportion of men who own cats is greater than \( 10\% \). ### **Example** Suppose you surveyed \( 200 \) men, and \( 30 \) of them own cats. - Sample proportion: \[ \hat{p} = \frac{30}{200} = 0.15 \] - Test statistic: \[ z = \frac{0.15 - 0.1}{\sqrt{\frac{0.1 \times 0.9}{200}}} \approx \frac{0.05}{0.0212} \approx 2.36 \] - Since \( 2.36 > 1.645 \), we reject \( H_0 \). - **Conclusion**: There is sufficient evidence at the \( 0.05 \) significance level to support the claim that the proportion of men who own cats is greater than \( 10\% \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To analyze the claim that more than 10% of men own cats, we define our hypotheses clearly! The null hypothesis \(H_0\) states that the proportion of men who own cats is equal to 10%, or \(p = 0.1\). The alternative hypothesis \(H_1\) suggests that the proportion is greater than 10%, or \(p > 0.1\). Given that we are testing for an increase in proportion, this setup indicates that the test is right-tailed. Once you’ve got your hypotheses in order, it's time to dive into real-world application! Imagine you’re conducting a survey among a group of men to see how many of them own cats. You gather your data, calculate the sample proportion, and utilize the binomial or normal approximation methods (depending on your sample size) to perform a hypothesis test. If your calculated p-value is less than 0.05, then pop the confetti! You've got evidence to reject the null hypothesis and support that indeed, a greater proportion than 10% of men own cats!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad