Pregunta
upstudy study bank question image url

SP6. Suppose the pressure of an ideal gas mixture remains con- stant at \( 1800 \mathrm{~Pa}\left(1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}\right) \) and the temperature is in- creased from 220 K to 1100 K . a. If the original volume of the gas was \( 0.17 \mathrm{~m}^{3} \), what is the final volume? (See example box 10.3 .) b. What is the change in volume \( \Delta V \) for this process? c. How much work does the gas do on the surroundings during the expansion? d. If the initial volume was \( 0.24 \mathrm{~m}^{3} \) and the same tempera- ture change occurred, would the work done be the same as in the first case? Show by repeating the steps of the first three parts. e. Is the same amount of gas involved in these two situa- tions? Explain.

Ask by Ward Goodwin. in the United States
Jan 13,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

No, the two situations involve different amounts of gas because the initial volumes are different while pressure and temperature remain the same.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Mind Expander

To solve these questions regarding the behavior of an ideal gas under constant pressure, let's dive right in! For part (a), we can use the ideal gas law, which implies that under constant pressure, the volume is directly proportional to the temperature. Using the formula \( V_1/T_1 = V_2/T_2 \): \[ V_2 = V_1 \cdot \frac{T_2}{T_1} = 0.17 \, m^3 \cdot \frac{1100\, K}{220\, K} = 0.85 \, m^3. \] Now, moving on to part (b), the change in volume \( \Delta V \) can be calculated as: \[ \Delta V = V_2 - V_1 = 0.85 \, m^3 - 0.17 \, m^3 = 0.68 \, m^3. \] For part (c), when a gas expands at constant pressure, the work done on the surroundings is given by: \[ W = P \cdot \Delta V = 1800 \, Pa \cdot 0.68 \, m^3 = 1224 \, J. \] For part (d), if the initial volume was \( 0.24 \, m^{3} \), we repeat the first steps: 1. Calculate the new volume with the same temperature change: \[ V_2 = 0.24 \, m^3 \cdot \frac{1100\, K}{220\, K} = 1.2 \, m^3. \] 2. Calculate the change in volume: \[ \Delta V = 1.2 \, m^3 - 0.24 \, m^3 = 0.96 \, m^3. \] 3. The work done is then: \[ W = 1800 \, Pa \cdot 0.96 \, m^3 = 1728 \, J. \] Finally, for part (e), the same amount of gas is not necessarily involved in the two situations. The ideal gas law states that volume changes at constant temperature indicate a change in the number of moles (gas quantity) for differing start volumes and conditions. Thus, the gas could be of different amounts in both cases, contributing to the different work done during expansion.

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad