Pregunta
upstudy study bank question image url

IC Which sets of three of numbers represent the sides of an obtuse triangle? Check all that apply \( 4,7,8 \) \( 3,4,5 \) 2, 2,3 \( 6,8,9 \) \( 3,5,6 \)

Ask by Ramos Harrington. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The sets \(2, 2, 3\) and \(3, 5, 6\) can form obtuse triangles.

Solución

To determine which sets of three numbers can form the sides of an **obtuse triangle**, we'll follow these steps: 1. **Check the Triangle Inequality Theorem**: - The sum of any two sides must be greater than the third side. 2. **Determine the Type of Triangle**: - For sides \(a \leq b \leq c\): - **Obtuse Triangle**: \(a^2 + b^2 < c^2\) - **Right Triangle**: \(a^2 + b^2 = c^2\) - **Acute Triangle**: \(a^2 + b^2 > c^2\) Let's evaluate each set: 1. **\(4, 7, 8\)** - **Triangle Inequality**: \(4 + 7 > 8\), \(4 + 8 > 7\), \(7 + 8 > 4\) → **Valid Triangle** - **Type**: \[ 4^2 + 7^2 = 16 + 49 = 65 \\ 8^2 = 64 \\ 65 > 64 \Rightarrow \text{Acute Triangle} \] - **Result**: **Not Obtuse** 2. **\(3, 4, 5\)** - **Triangle Inequality**: \(3 + 4 > 5\), \(3 + 5 > 4\), \(4 + 5 > 3\) → **Valid Triangle** - **Type**: \[ 3^2 + 4^2 = 9 + 16 = 25 \\ 5^2 = 25 \\ 25 = 25 \Rightarrow \text{Right Triangle} \] - **Result**: **Not Obtuse** 3. **\(2, 2, 3\)** - **Triangle Inequality**: \(2 + 2 > 3\), \(2 + 3 > 2\), \(2 + 3 > 2\) → **Valid Triangle** - **Type**: \[ 2^2 + 2^2 = 4 + 4 = 8 \\ 3^2 = 9 \\ 8 < 9 \Rightarrow \text{Obtuse Triangle} \] - **Result**: **Obtuse** 4. **\(6, 8, 9\)** - **Triangle Inequality**: \(6 + 8 > 9\), \(6 + 9 > 8\), \(8 + 9 > 6\) → **Valid Triangle** - **Type**: \[ 6^2 + 8^2 = 36 + 64 = 100 \\ 9^2 = 81 \\ 100 > 81 \Rightarrow \text{Acute Triangle} \] - **Result**: **Not Obtuse** 5. **\(3, 5, 6\)** - **Triangle Inequality**: \(3 + 5 > 6\), \(3 + 6 > 5\), \(5 + 6 > 3\) → **Valid Triangle** - **Type**: \[ 3^2 + 5^2 = 9 + 25 = 34 \\ 6^2 = 36 \\ 34 < 36 \Rightarrow \text{Obtuse Triangle} \] - **Result**: **Obtuse** ### **Conclusion** The following sets represent the sides of an **obtuse triangle**: - \( \mathbf{2, 2, 3} \) - \( \mathbf{3, 5, 6} \) **Hence, the correct options are:** - \(2, 2, 3\) - \(3, 5, 6\)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To determine if a set of three numbers represents the sides of an obtuse triangle, we can use the property that in an obtuse triangle, the square of the longest side must be greater than the sum of the squares of the other two sides. Following this, let's analyze the given options: 1. **\(4, 7, 8\)**: Here, \(8^2 = 64\) and \(4^2 + 7^2 = 16 + 49 = 65\). Since \(64 < 65\), it does not represent an obtuse triangle. 2. **\(3, 4, 5\)**: In this case, \(5^2 = 25\) and \(3^2 + 4^2 = 9 + 16 = 25\). Since \(25 = 25\), it represents a right triangle, not obtuse. 3. **\(2, 2, 3\)**: For this, \(3^2 = 9\) and \(2^2 + 2^2 = 4 + 4 = 8\). Since \(9 > 8\), this set represents an obtuse triangle. 4. **\(6, 8, 9\)**: Checking this, \(9^2 = 81\) and \(6^2 + 8^2 = 36 + 64 = 100\). Since \(81 < 100\), it does not represent an obtuse triangle. 5. **\(3, 5, 6\)**: Finally, for this set, \(6^2 = 36\) and \(3^2 + 5^2 = 9 + 25 = 34\). Since \(36 > 34\), this set also represents an obtuse triangle. Thus, the sets representing the sides of an obtuse triangle are \(2, 2, 3\) and \(3, 5, 6\).

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad