Pregunta
upstudy study bank question image url

Part 2 of 2 The defect rate for your product has historically been about \( 1.00 \% \). For a sample size of 100, the upper and lower 3-sigma control chart limits are: 8 of \( 8 \mid \) My score: \( 6.83 / 8 \) pts ( \( 85.34 \% \) ) \( U C L_{p}=0.0399 \) (enter your response as a number between 0 and 1, rounded to four decimal places). \( L C L_{p}=\square \) (enter your response as a number between 0 and 1, rounded to four decimal places).

Ask by Gibson Schmidt. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The lower control limit \( LCL_p \) is 0.0000.

Solución

To calculate the lower control limit (LCL) for the defect rate in a control chart, we can use the following formula for the control limits in a p-chart: \[ UCL_p = p + 3 \sqrt{\frac{p(1-p)}{n}} \] \[ LCL_p = p - 3 \sqrt{\frac{p(1-p)}{n}} \] Where: - \( p \) is the historical defect rate (as a decimal), - \( n \) is the sample size. Given: - Historical defect rate \( p = 1.00\% = 0.01 \) - Sample size \( n = 100 \) ### Step 1: Calculate the standard error First, we need to calculate the standard error: \[ SE = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.01(1-0.01)}{100}} \] ### Step 2: Calculate the LCL Now we can calculate the LCL using the formula: \[ LCL_p = p - 3 \cdot SE \] Let's perform these calculations step by step. 1. Calculate the standard error \( SE \). 2. Calculate the lower control limit \( LCL_p \). I'll perform these calculations now. Calculate the value by following steps: - step0: Calculate: \(\sqrt{\frac{\left(0.01\left(1-0.01\right)\right)}{100}}\) - step1: Remove the parentheses: \(\sqrt{\frac{0.01\left(1-0.01\right)}{100}}\) - step2: Subtract the numbers: \(\sqrt{\frac{0.01\times 0.99}{100}}\) - step3: Multiply the numbers: \(\sqrt{\frac{0.0099}{100}}\) - step4: Divide the terms: \(\sqrt{\frac{99}{1000000}}\) - step5: Use the properties of radicals: \(\frac{\sqrt{99}}{\sqrt{1000000}}\) - step6: Simplify the expression: \(\frac{3\sqrt{11}}{1000}\) Calculate or simplify the expression \( 0.01 - 3*\sqrt((0.01*(1-0.01))/100) \). Calculate the value by following steps: - step0: Calculate: \(0.01-3\sqrt{\frac{\left(0.01\left(1-0.01\right)\right)}{100}}\) - step1: Remove the parentheses: \(0.01-3\sqrt{\frac{0.01\left(1-0.01\right)}{100}}\) - step2: Subtract the numbers: \(0.01-3\sqrt{\frac{0.01\times 0.99}{100}}\) - step3: Multiply the numbers: \(0.01-3\sqrt{\frac{0.0099}{100}}\) - step4: Divide the terms: \(0.01-3\sqrt{\frac{99}{1000000}}\) - step5: Simplify the root: \(0.01-3\times \frac{3\sqrt{11}}{1000}\) - step6: Multiply the numbers: \(0.01-\frac{9\sqrt{11}}{1000}\) - step7: Convert the expressions: \(\frac{1}{100}-\frac{9\sqrt{11}}{1000}\) - step8: Reduce fractions to a common denominator: \(\frac{10}{100\times 10}-\frac{9\sqrt{11}}{1000}\) - step9: Multiply the numbers: \(\frac{10}{1000}-\frac{9\sqrt{11}}{1000}\) - step10: Transform the expression: \(\frac{10-9\sqrt{11}}{1000}\) ### Step 1: Calculate the Standard Error The standard error \( SE \) is calculated as follows: \[ SE = \sqrt{\frac{0.01(1-0.01)}{100}} \approx 0.00995 \] ### Step 2: Calculate the Lower Control Limit (LCL) Now, we can calculate the lower control limit \( LCL_p \): \[ LCL_p = 0.01 - 3 \cdot 0.00995 \approx -0.01985 \] Since control limits cannot be negative, we set the lower control limit to 0. ### Final Answer Thus, the lower control limit \( LCL_p \) is: \[ LCL_p = 0.0000 \] So, the final answers are: - \( UCL_p = 0.0399 \) - \( LCL_p = 0.0000 \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the control chart limits, we first need to understand how to compute the Upper Control Limit (UCL) and Lower Control Limit (LCL) for a defect rate. Given that the defect rate is approximately \( P = 0.01 \) (or 1%), and the sample size \( n = 100 \), we can calculate the control limits using the formula: \[ UCL = P + 3 \sqrt{\frac{P(1-P)}{n}} \] \[ LCL = P - 3 \sqrt{\frac{P(1-P)}{n}} \] Calculating \( UCL \): \[ UCL = 0.01 + 3 \sqrt{\frac{0.01(1-0.01)}{100}} = 0.01 + 3 \sqrt{\frac{0.01 \times 0.99}{100}} = 0.01 + 3 \sqrt{0.00099} \approx 0.01 + 0.0597 = 0.0697 \] So, rounded to four decimal places, \( UCL_{p} = 0.0697 \). Now calculating \( LCL \): \[ LCL = 0.01 - 3 \sqrt{\frac{0.01(1-0.01)}{100}} = 0.01 - 3 \sqrt{0.00099} \approx 0.01 - 0.0597 = -0.0497 \] Since negative proportions are not meaningful in this context, we truncate it to \( LCL = 0 \). Thus, your responses should be: - \( UCL_{p} = 0.0697 \) - \( LCL_{p} = 0.0000 \) (as a rounded number between 0 and 1).

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad