Pregunta
upstudy study bank question image url

Part A This is the start of an explanation of how to plan a coordinate proof that all equilateral triangles are similar. Choose the vertices necessary. Show that an equilateral triangle with side length a can be placed on the coordinate plane with these vertices. A. \( (0,0) ;(0, a) ;\left(-\frac{a \sqrt{3}}{2}, 0\right) \) B. \( (-a, 0) ;\left(-\frac{a}{2}, 0\right) ;\left(0,-\frac{a}{2}\right) \) C. \( \left(-\frac{a}{2}, 0\right) ;\left(\frac{a}{2}, 0\right) ;\left(0, \frac{a \sqrt{3}}{2}\right) \) D. \( (a, 0) ;\left(\frac{a \sqrt{3}}{2}, 0\right),\left(0, \frac{a}{2}\right) \) Part B Choose the words to finish the explanation of how to plan a coordinate proof that all equilateral triangles are similar. Show that an equilateral triangle with side length a can be placed on the coordinate plane with the vertices specified above. Similarly place an equilateral triangle with legs having length \( b \) on the coordinate plane. Show that there exists a \( \square \) that maps one triangle onto the other. Choose... reflection dilation Roviow Progress rotation translation Question 7 of 17 Back Next

Ask by Davies Lawson. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

For Part A, choose option C: (–a/2, 0), (a/2, 0), and (0, (a√3)/2) as the vertices of the equilateral triangle. For Part B, use dilation to map one equilateral triangle onto the other.

Solución

For Part A, you need to choose vertices that define an equilateral triangle with side length a. Option C, with vertices (–a/2, 0); (a/2, 0); (0, (a√3)/2), is the correct choice. For example, the distance between (–a/2, 0) and (a/2, 0) is   √[(a/2 – (–a/2))² + (0 – 0)²] = √[(a)²] = a, and the other side lengths can be verified similarly. For Part B, after placing one equilateral triangle with side length a and a second one with side length b on the coordinate plane, you show that a dilation is the transformation that maps one triangle onto the other (preserving the angles and scaling the side lengths by a constant factor). Thus, the correct answers are: Part A: Option C Part B: dilation

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The correct choice of vertices for placing an equilateral triangle with side length \( a \) on the coordinate plane is A: \( (0,0); (0,a); \left(-\frac{a \sqrt{3}}{2},0\right) \). By using these specific coordinates, you're ensuring that the triangle's vertices lie on a neat, symmetrical position around the origin, making your proof more straightforward and visually intuitive. To finish your proof, you should choose “dilation” as the method of mapping one triangle onto the other. This technique allows you to show how the triangles, despite being different in size (one with side length \( a \) and the other with length \( b \)), maintain their shape – proving that they are indeed similar. Dilation is key in demonstrating the proportional relationships of corresponding sides.

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad