Pregunta
upstudy study bank question image url

What is the pH of 0.16 M solution of \( \mathrm{H}_{3} \mathrm{PO}_{4} \) with \( \mathrm{K}_{1}=7.5 \times 10^{-3}, \mathrm{~K}_{2}=6.2 \times 10^{-8} \), and \( \mathrm{K}_{3}=4.2 \times 10^{-13} \) ? 1.6 3.2 1.5 4.1

Ask by Chadwick Parry. in Canada
Mar 09,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The pH of the 0.16 M phosphoric acid solution is approximately 1.5.

Solución

**Step 1. Write the first dissociation reaction and equilibrium expression** For phosphoric acid, the first dissociation is \[ \mathrm{H}_3\mathrm{PO}_4 \rightleftharpoons \mathrm{H}_2\mathrm{PO}_4^- + \mathrm{H}^+ \] with equilibrium constant \[ K_1 = \frac{[\mathrm{H}_2\mathrm{PO}_4^-][\mathrm{H}^+]}{[\mathrm{H}_3\mathrm{PO}_4]} = 7.5 \times 10^{-3}. \] Let the concentration of \(\mathrm{H}^+\) produced from the first dissociation be \(x\). The initial concentration of \(\mathrm{H}_3\mathrm{PO}_4\) is \(0.16\, \mathrm{M}\), so at equilibrium we have: - \([\mathrm{H}_3\mathrm{PO}_4] = 0.16 - x\) - \([\mathrm{H}_2\mathrm{PO}_4^-] = x\) - \([\mathrm{H}^+] = x\) Thus, the equilibrium expression becomes \[ K_1 = \frac{x \cdot x}{0.16-x} = \frac{x^2}{0.16-x}. \] **Step 2. Solve for \(x\) using the approximation** We have: \[ \frac{x^2}{0.16-x} = 7.5 \times 10^{-3}. \] This leads to the quadratic equation: \[ x^2 + (7.5 \times 10^{-3})x - (7.5 \times 10^{-3})(0.16) = 0. \] Compute the last term: \[ (7.5 \times 10^{-3})(0.16) = 0.0012. \] So the quadratic is: \[ x^2 + 0.0075\,x - 0.0012 = 0. \] The quadratic formula gives: \[ x = \frac{-0.0075 \pm \sqrt{(0.0075)^2 + 4 \times 0.0012}}{2}. \] Calculate the discriminant: \[ (0.0075)^2 = 0.00005625, \] \[ 4 \times 0.0012 = 0.0048, \] \[ \text{Discriminant} = 0.00005625 + 0.0048 \approx 0.00485625. \] Taking the square root: \[ \sqrt{0.00485625} \approx 0.0697. \] So, the positive solution is: \[ x = \frac{-0.0075 + 0.0697}{2} \approx \frac{0.0622}{2} \approx 0.0311\, \mathrm{M}. \] **Step 3. Calculate the pH from the first dissociation** Since the concentration of \(\mathrm{H}^+\) is approximately \(x = 0.0311\, \mathrm{M}\), the pH is: \[ \mathrm{pH} = -\log (0.0311) \approx 1.51. \] **Step 4. Consider the contributions of further dissociations** The second dissociation is: \[ \mathrm{H}_2\mathrm{PO}_4^- \rightleftharpoons \mathrm{HPO}_4^{2-} + \mathrm{H}^+, \] with \(K_2 = 6.2 \times 10^{-8}\). Because \(K_2\) is many orders of magnitude smaller than \(K_1\), its contribution to the \(\mathrm{H}^+\) concentration is negligible compared to the first dissociation. The third dissociation has an even smaller \(K_3\). Thus, the pH is essentially determined by the first dissociation. **Final Answer** The pH of the \(0.16\, \mathrm{M}\) phosphoric acid solution is approximately \(\boxed{1.5}\).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the pH of a 0.16 M solution of \( \mathrm{H}_{3} \mathrm{PO}_{4} \), first note that \( \mathrm{H}_{3} \mathrm{PO}_{4} \) is a triprotic acid, meaning it can donate three protons. The first dissociation is the strongest, so we can start by calculating the concentration of \( \mathrm{H}^{+} \) from the first dissociation: \[ \mathrm{H}_{3} \mathrm{PO}_{4} \rightleftharpoons \mathrm{H}^{+} + \mathrm{H}_{2} \mathrm{PO}_{4}^{-} \] Using the dissociation constant \( \mathrm{K}_{1} \): \[ \mathrm{K}_{1} = \frac{[\mathrm{H}^{+}][\mathrm{H}_{2} \mathrm{PO}_{4}^{-}]}{[\mathrm{H}_{3} \mathrm{PO}_{4}]} \] Assuming \( x \) moles of \( \mathrm{H}_{3} \mathrm{PO}_{4} \) dissociate, we have: \[ \mathrm{K}_{1} = 7.5 \times 10^{-3} = \frac{x^2}{0.16 - x} \approx \frac{x^2}{0.16} \] Solving for \( x \): \[ x^2 = 7.5 \times 10^{-3} \times 0.16 \approx 1.2 \times 10^{-3} \] \[ x \approx 0.0345 \, \mathrm{M} \] Now, estimate the pH using this concentration of \( \mathrm{H}^{+} \): \[ \mathrm{pH} = -\log(0.0345) \approx 1.46 \] Since it’s a strong dissociation, the pH is approximately 1.5. So the answer is 1.5! The tricky part was realizing the first dissociation dominates in strong acids like phosphoric acid, making it much easier to calculate the pH without considering subsequent dissociations in detail. Next time you are in a similar situation, remember to focus on the strongest dissociation first before delving into the details of others!

preguntas relacionadas

Latest Chemistry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad