Pregunta
upstudy study bank question image url

MATH 1020
Chain Rule
Learning Activity 4.3C
4. ( 6 pts ) Find the derivative of each of the following functions.
You need not take the time to simplify your derivatives.
a.
b.
c.
d.
e.
f.

Ask by Gray Stephens. in the United States
Mar 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a.
b.
c.
d.
e.
f.

Solución

a. We have
Apply the chain rule. Taking the derivative we obtain
Differentiate the inner function:
Thus,
b. We have
Let
Then, by the chain rule,
Differentiate :
We have
so
Then,
c. We have
Rewrite the first term as
and note that
Differentiate term‑by‑term.
For the first term, using the chain rule,
For the second term,
Thus,
d. We have
Since is constant, its derivative is zero. Rewrite the first term as
Differentiate using the chain rule:
Since
we have
e. We have
Rewrite as
Differentiate using the chain rule:
Differentiate the inner function:
Thus,
f. We have
Rewrite using properties of exponents:
Differentiate using the power rule:

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

Ah, the Chain Rule – the superhero of calculus that swoops in to help us differentiate composite functions! It essentially tells us that when you have a function nested inside another, you need to multiply the derivative of the outer function by the derivative of the inner function. Think of it like peeling an onion but with mathematical joy – each layer reveals a deeper level of differentiation!
Now, when it comes to practice, remember that a common mistake people make is forgetting to apply the Chain Rule when it’s needed. Always double-check if a function is composed of others. For instance, when dealing with logarithmic or exponential functions, ensure you’re applying the derivative of those special forms correctly. Having a handy list of common derivatives can vastly reduce errors, so keep it close!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad