The half-life of strontium-90 is approximately 29 years. How much of a 500 g sample of strontium- 90 will remain after 58 years? Remaining Amount \( =[?](1-\square) \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
After 58 years, which is two half-lives of strontium-90 (29 years each), we can determine the remaining amount using the half-life formula. After the first half-life, 250 g of strontium-90 will remain, and after the second half-life, half of that will remain, giving us 125 g. So, the remaining amount after 58 years is \( 125 \, g \). Furthermore, this concept of half-life is crucial in various fields, including geology and archaeology—think radiometric dating! By understanding how long certain isotopes take to decay, scientists can date artifacts and rocks, helping us piece together the history of our planet and human civilization. Isn't it fascinating how such tiny particles can unlock the secrets of ages past?