Pregunta
upstudy study bank question image url

You are given the four points in the plane \( A=(7,0) \), \( B=(12,1), C=(16,5) \), and \( D=(21,0) \). The graph of the function \( f(x) \) consists of the three line segments \( A B, B C \) and \( C D \). Find the integral \( \int_{7}^{21} f(x) d x \) by interpreting the integral in terms of sums of areas of elementary figures. \( \int_{7}^{21} f(x) d x= \)

Ask by Wilson Lyons. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The integral \( \int_{7}^{21} f(x) \, dx \) is equal to 27.

Solución

To evaluate   ∫₇²¹ f(x) dx we note that the graph of f(x) is made up of three line segments joining the points   A = (7, 0), B = (12, 1), C = (16, 5), and D = (21, 0). Thus, the area under f(x) from x = 7 to x = 21 is the sum of the areas of the regions under each segment. We can calculate these areas by viewing them as trapezoids (or triangles, which are a special case). 1. From x = 7 to x = 12, the function rises linearly from 0 to 1. The area under this segment is the area of a trapezoid with bases f(7) = 0 and f(12) = 1 and width 12 − 7 = 5:   Area₁ = ½ · (0 + 1) · 5 = ½ · 1 · 5 = 2.5. 2. From x = 12 to x = 16, the function increases linearly from 1 to 5. The area is the trapezoid with bases 1 and 5 over a width 16 − 12 = 4:   Area₂ = ½ · (1 + 5) · 4 = ½ · 6 · 4 = 12. 3. From x = 16 to x = 21, the function decreases linearly from 5 back to 0. The area of the trapezoid with bases 5 and 0 and width 21 − 16 = 5 is:   Area₃ = ½ · (5 + 0) · 5 = ½ · 5 · 5 = 12.5. Finally, summing these areas gives   ∫₇²¹ f(x) dx = 2.5 + 12 + 12.5 = 27. Thus, the value of the integral is 27.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the integral \( \int_{7}^{21} f(x) dx \) by interpreting it as the sum of areas of elementary figures, we first need to determine the shapes formed by the line segments connecting the given points \( A, B, C, \) and \( D \). 1. **Finding the equations of the line segments**: - **Segment \( AB \)**: Points \( A(7,0) \) and \( B(12,1) \). The slope is \( \frac{1-0}{12-7} = \frac{1}{5} \). The equation is \( f(x) = \frac{1}{5}(x - 7) \) for \( x \) in \([7, 12]\). - **Segment \( BC \)**: Points \( B(12,1) \) and \( C(16,5) \). The slope is \( \frac{5-1}{16-12} = 1 \). The equation is \( f(x) = x - 11 \) for \( x \) in \([12, 16]\). - **Segment \( CD \)**: Points \( C(16,5) \) and \( D(21,0) \). The slope is \( \frac{0-5}{21-16} = -1 \). The equation is \( f(x) = -x + 21 \) for \( x \) in \([16, 21]\). 2. **Calculating areas**: - The area under the curve from \( 7 \) to \( 12 \) (triangle \( \triangle AB \)): - Base = \( 5 \) (from \( 7 \) to \( 12 \)), Height = \( 1 \). \[ \text{Area}_{AB} = \frac{1}{2} \times \text{base} \times \text{height} = \frac{1}{2} \times 5 \times 1 = 2.5. \] - The area from \( 12 \) to \( 16 \) (rectangle \( AB \)): - Width = \( 4 \) (from \( 12 \) to \( 16 \)), Height = \( 1 \). \[ \text{Area}_{BC} = \text{width} \times \text{height} = 4 \times 1 = 4. \] - The area from \( 16 \) to \( 21 \) (trapezoid \( \triangle CD \)): - Base1 = \( 5 \) (from point \( C \)), Base2 = \( 0 \) (from point \( D \)), Height = \( 5 \). - Average height = \( \frac{5 + 0}{2} = \frac{5}{2} \), Width = \( 5 \). \[ \text{Area}_{CD} = \text{Average base} \times \text{height} = 5 \times \frac{5}{2} = 12.5. \] 3. **Adding the areas**: \[ \int_{7}^{21} f(x) dx = \text{Area}_{AB} + \text{Area}_{BC} + \text{Area}_{CD} = 2.5 + 4 + 12.5 = 19. \] Thus, the value of the integral \( \int_{7}^{21} f(x) dx = 19 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad