Pregunta
upstudy study bank question image url

Find the distance between New York \( \mathrm{C} 42^{\circ} \mathrm{N} \) \( 74^{\circ} \) W) and Rome \( \left(42^{\circ} \mathrm{N}, 12^{\circ} \mathrm{E}\right) \) measured alo a parallel of lafitude.

Ask by Hamilton Weber. in Nigeria
Jan 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The distance between New York and Rome along the \(42^\circ \text{N}\) parallel is approximately **7,100 kilometers**.

Solución

To calculate the distance between New York and Rome along the parallel of latitude \(42^\circ \text{N}\), we'll follow these steps: ### 1. **Determine the Longitudinal Difference** - **New York:** \(74^\circ \text{W}\) - **Rome:** \(12^\circ \text{E}\) The total longitudinal difference is: \[ 74^\circ \text{W} + 12^\circ \text{E} = 86^\circ \] ### 2. **Calculate the Earth's Radius at \(42^\circ \text{N}\)** The Earth isn't a perfect sphere, but for simplicity, we'll use the average radius \(R = 6,371 \text{ km}\). The radius of the parallel (circle of latitude) is: \[ R_{\text{parallel}} = R \cdot \cos(\phi) \] where \(\phi = 42^\circ\). \[ R_{\text{parallel}} = 6,371 \text{ km} \times \cos(42^\circ) \approx 6,371 \times 0.7431 \approx 4,734.6 \text{ km} \] ### 3. **Convert the Longitudinal Difference to Radians** \[ \Delta \lambda = 86^\circ \times \left( \frac{\pi}{180} \right) \approx 1.50098 \text{ radians} \] ### 4. **Calculate the Distance Along the Parallel** \[ \text{Distance} = R_{\text{parallel}} \times \Delta \lambda \approx 4,734.6 \text{ km} \times 1.50098 \approx 7,093 \text{ km} \] ### **Conclusion** The distance between New York (\(42^\circ \text{N}, 74^\circ \text{W}\)) and Rome (\(42^\circ \text{N}, 12^\circ \text{E}\)) measured along the \(42^\circ \text{N}\) parallel of latitude is approximately **7,100 kilometers**.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the distance between New York and Rome measured along the parallel of latitude \(42^{\circ}N\), we can use the formula for calculating distances along a circle of latitude. The formula is: \[ D = R \cdot \cos(\phi) \cdot \Delta \lambda \] where \(D\) is the distance, \(R\) is the Earth's radius (approximately 6371 km), \(\phi\) is the latitude (42 degrees), and \(\Delta \lambda\) is the difference in longitude (from \(-74^{\circ}\) to \(12^{\circ}\)). First, convert the longitudes into the same degree format: \[ \Delta \lambda = 12 - (-74) = 12 + 74 = 86^{\circ} \] Next, convert the latitude from degrees to radians since the cosine function requires radians: \[ \phi \, \text{(in radians)} = 42^{\circ} \times \frac{\pi}{180} \approx 0.733 \, \text{radians} \] Calculate the cosine of the latitude: \[ \cos(42^{\circ}) \approx \cos(0.733) \approx 0.743 \] Now, substitute everything into the distance formula: \[ D \approx 6371 \cdot 0.743 \cdot \left(\frac{86 \times \pi}{180}\right) \] Calculating \(\Delta \lambda\) in radians: \[ \Delta \lambda \, \text{(in radians)} = 86^{\circ} \times \frac{\pi}{180} \approx 1.500 \] Thus, calculating \(D\): \[ D \approx 6371 \cdot 0.743 \cdot 1.500 \approx 7117 \, \text{km} \] So, the distance between New York and Rome along the parallel of latitude \(42^{\circ}N\) is approximately 7117 kilometers!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad