Pregunta
upstudy study bank question image url

Relative to the origin \( O \), the position vectors of \( P, Q \) and \( R \) are \( \left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right) \), \( \left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right) \) and \( \left(\begin{array}{c}-3 \\ 1 \\ -2\end{array}\right) \) respectively. Find \( P \hat{Q} R \). [4] The vector \( \mathbf{W}=\left(\begin{array}{l}m-\frac{1}{2} \\ m+\frac{1}{2} \\ m \sqrt{6}\end{array}\right) \). (i) If \( \mathbf{W} \) is a unit vector, find the possible values of \( m \). [2] (ii) The vector \( \mathbf{V}=\left(\begin{array}{c}m+3 \\ 2 m \\ -2 \sqrt{6}\end{array}\right) \). If \( \mathbf{W} \) is normal to \( \mathbf{V} \), find the values of \( m \). [4] (iii) The vector \( \mathbf{U}=\left(\begin{array}{c}m-\frac{1}{2} \\ n \\ 2 \sqrt{6}\end{array}\right) \). Given that \( \mathbf{W} \) is parallel to \( \mathbf{U} \), find the values of \( m \) and \( n \). [4] y using the substitution \( u=\sin x \), show that \[ \int_{x}^{\frac{1}{2} x} \frac{\cos x}{3+\cos ^{2} x} d x=\frac{1}{4} \ln \frac{1}{3} \]

Ask by Wilson Peterson. in Zimbabwe
Mar 11,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

**Part 1: Finding \( P \hat{Q} R \)** - \( \overrightarrow{PQ} = \begin{pmatrix} -1 \\ -3 \\ -5 \end{pmatrix} \) - \( \overrightarrow{QR} = \begin{pmatrix} -4 \\ 1 \\ -1 \end{pmatrix} \) - \( P \hat{Q} R = \overrightarrow{PQ} \times \overrightarrow{QR} = \begin{pmatrix} 8 \\ 19 \\ -13 \end{pmatrix} \) **Part 2: Values of \( m \) for \( \mathbf{W} \)** - **(i)** If \( \mathbf{W} \) is a unit vector, then \( m = \frac{1}{4} \) or \( m = -\frac{1}{4} \). - **(ii)** If \( \mathbf{W} \) is normal to \( \mathbf{V} \), then \( m = 0 \). **Part 3: Values of \( m \) and \( n \) for \( \mathbf{W} \) being parallel to \( \mathbf{U} \)** - \( m = 1 \) and \( n = 2 \).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Bonus Knowledge

To find the value of \( P \hat{Q} R \), we first calculate the vectors \( \overrightarrow{PQ} \) and \( \overrightarrow{PR} \). \[ \overrightarrow{PQ} = \left(\begin{array}{l}1 \\ 0 \\ -1\end{array}\right) - \left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right) = \left(\begin{array}{l}-1 \\ -3 \\ -5\end{array}\right) \] \[ \overrightarrow{PR} = \left(\begin{array}{l}-3 \\ 1 \\ -2\end{array}\right) - \left(\begin{array}{l}2 \\ 3 \\ 4\end{array}\right) = \left(\begin{array}{l}-5 \\ -2 \\ -6\end{array}\right) \] The cross product \( \overrightarrow{PQ} \times \overrightarrow{PR} \) gives us \( P \hat{Q} R \). Using the determinant formula, we have: \[ P \hat{Q} R = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & -3 & -5 \\ -5 & -2 & -6 \end{vmatrix} = \hat{i}((-3)(-6) - (-5)(-2)) - \hat{j}((-1)(-6) - (-5)(-5)) + \hat{k}((-1)(-2) - (-3)(-5)) \] This results in: \[ = \hat{i}(18 - 10) - \hat{j}(6 - 25) + \hat{k}(2 + 15) \] \[ = 8\hat{i} + 19\hat{j} + 17\hat{k} \] Thus, \( P \hat{Q} R = \left(\begin{array}{c}8 \\ 19 \\ 17\end{array}\right) \). --- (i) For \( \mathbf{W} \) to be a unit vector, we need to set the magnitude equal to 1: \[ \sqrt{\left(m - \frac{1}{2}\right)^2 + \left(m + \frac{1}{2}\right)^2 + \left(m\sqrt{6}\right)^2} = 1 \] Squaring both sides results in: \[ \left(m - \frac{1}{2}\right)^2 + \left(m + \frac{1}{2}\right)^2 + 6m^2 = 1 \] Expanding and simplifying gives us: \[ 2m^2 + \frac{1}{4} + 6m^2 = 1 \quad \Rightarrow \quad 8m^2 = \frac{3}{4} \quad \Rightarrow \quad m^2 = \frac{3}{32} \] Thus, \( m = \pm \frac{\sqrt{3}}{4} \). --- (ii) For \( \mathbf{W} \) to be normal to \( \mathbf{V} \), we need: \[ \mathbf{W} \cdot \mathbf{V} = 0 \] Calculating this gives: \[ \left(m - \frac{1}{2}\right)(m + 3) + \left(m + \frac{1}{2}\right)(2m) + (m \sqrt{6})(-2\sqrt{6}) = 0 \] Simplifying the dot product leads to: \[ (m^2 + 3m - \frac{1}{2}m - \frac{3}{2}) + (2m^2 + m) - 12m = 0 \] After putting it all together: \[ -9m + 3m^2 - \frac{3}{2} = 0 \] Multiplying through by 2 clears the fraction. Solving the resulting quadratic \( 3m^2 - 9m - 3 = 0 \) gives: \[ m = 3 \pm \frac{3\sqrt{3}}{3} = 3 \pm \sqrt{3} \] --- (iii) For \( \mathbf{W} \) to be parallel to \( \mathbf{U} \), we need: \[ \mathbf{W} = k \mathbf{U} \] Breaking it down yields: \[ \left(m - \frac{

preguntas relacionadas

Step 1 We are asked to find the surface area of the curve defined by \( y=x^{3} \) rotated about the \( x \)-axis over the interval \( 0 \leq x \leq 2 \). Recall the following formula for the surface area of a function of \( x \) rotated about the \( x \)-axis. Note that as the curve rotates in a circular manner about the \( x \)-axis, the expression \( 2 \pi y \) is the circumference of radius \( y \) and the radical measures the arc length that is the width of a band. \[ S=\int_{a}^{b} 2 \pi y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \] We begin by substituting \( y=x^{3} \) and its derivative in the surface area formula and simplifying. \[ \begin{aligned} S & \left.=\int_{0}^{2} 2 \pi\left(x^{3}\right) \sqrt{1+\left(\sqrt{3 x^{2}}\right.} \sqrt{3 x^{2}}\right)^{2} d x \\ & =\int_{0}^{2} 2 \pi\left(x^{3}\right) \sqrt{1+9}, 9^{x^{4}} d x \end{aligned} \] Step 2 We have found the following integral for the surface area. \[ S=\int_{0}^{2} 2 \pi\left(x^{3}\right) \sqrt{1+9 x^{4}} d x \] To evaluate the integral we will first make the substitution \( u=1+9 x^{4} \). We also will need the following to complete the substitution. \[ \begin{array}{l} d u=36 x^{3} \\ x=0 \rightarrow u=1 \\ x=2 \rightarrow u=\square 146 x^{d x} \end{array} \] Step 3 We can now make the substitution \( u=1+(9 x)^{4} \) and evaluate the definite integral with respect to \( u \). \[ \begin{aligned} \int_{0}^{2} 2 \pi\left(x^{3}\right) \sqrt{1+(9 x)^{4}} d x & =\int_{1}^{145} 2 \pi \sqrt{u}\left(\frac{d u}{36}\right) \\ & =\frac{2 \pi}{36} \int_{1}^{145} \sqrt{u} d u \end{aligned} \] \[ =\frac{2 \pi}{36}\left[\frac{2}{3} u^{\frac{2}{3}}\right]_{1}^{145} \]

Latest Calculus Questions

\[ y=x^{3}, \quad 0 \leq x \leq 2 \] Step 1 We are asked to find the surface area of the curve defined by \( y=x^{3} \) rotated about the \( x \)-axis over the interv \( 0 \leq x \leq 2 \). Recall the following formula for the surface area of a function of \( x \) rotated about the \( x \)-axis. Note t as the curve rotates in a circular manner about the \( x \)-axis, the expression \( 2 \pi y \) is the circumference of radius and the radical measures the arc length that is the width of a band, \[ S=\int_{a}^{b} 2 \pi y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \] We begin by substituting \( y=x^{3} \) and its derivative in the surface area formula and simplifying, \[ \begin{aligned} S & \left.=\int_{0}^{2} 2 \pi\left(x^{3}\right) \sqrt{1+\left(\sqrt{3 x^{2}}\right.} \sqrt{3 x^{2}}\right)^{2} d x \\ & =\int_{0}^{2} 2 \pi\left(x^{3}\right) \sqrt{1+9} \sqrt[9]{ } x^{4} d x \end{aligned} \] Step 2 We have found the following integral for the surface area. \[ S=\int_{0}^{2} 2 \pi\left(x^{3}\right) \sqrt{1+9 x^{4}} d x \] To evaluate the integral we will first make the substitution \( u=1+9 x^{4} \). We also will need the following to complete the substitution. \[ \begin{array}{l} d u=36 x^{3} \\ x=0 \rightarrow u=1 \\ x=2 \rightarrow u=\square 14 \end{array} \] Step 3 We can now make the substitution \( u=1+(9 x)^{4} \) and evaluate the definite integral with respect to \( u \). \[ \begin{aligned} \int_{0}^{2} 2 \pi\left(x^{3}\right) \sqrt{1+(9 x)^{4}} d x & =\int_{1}^{145} 2 \pi \sqrt{u}\left(\frac{d u}{36}\right) \\ & =\frac{2 \pi}{36} \int_{1}^{145} \sqrt{u} d u \end{aligned} \] \[ =\frac{2 \pi}{36}\left[\frac{2}{3} u^{\frac{2}{3}}\right]_{1}^{145} \]
Step 1 We are asked to find the surface area of the curve defined by \( y=x^{3} \) rotated about the \( x \)-axis over the interval \( 0 \leq x \leq 2 \). Recall the following formula for the surface area of a function of \( x \) rotated about the \( x \)-axis. Note that as the curve rotates in a circular manner about the \( x \)-axis, the expression \( 2 \pi y \) is the circumference of radius \( y \) and the radical measures the arc length that is the width of a band. \[ S=\int_{a}^{b} 2 \pi y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \] We begin by substituting \( y=x^{3} \) and its derivative in the surface area formula and simplifying. \[ \begin{aligned} S & \left.=\int_{0}^{2} 2 \pi\left(x^{3}\right) \sqrt{1+\left(\sqrt{3 x^{2}}\right.} \sqrt{3 x^{2}}\right)^{2} d x \\ & =\int_{0}^{2} 2 \pi\left(x^{3}\right) \sqrt{1+9}, 9^{x^{4}} d x \end{aligned} \] Step 2 We have found the following integral for the surface area. \[ S=\int_{0}^{2} 2 \pi\left(x^{3}\right) \sqrt{1+9 x^{4}} d x \] To evaluate the integral we will first make the substitution \( u=1+9 x^{4} \). We also will need the following to complete the substitution. \[ \begin{array}{l} d u=36 x^{3} \\ x=0 \rightarrow u=1 \\ x=2 \rightarrow u=\square 146 x^{d x} \end{array} \] Step 3 We can now make the substitution \( u=1+(9 x)^{4} \) and evaluate the definite integral with respect to \( u \). \[ \begin{aligned} \int_{0}^{2} 2 \pi\left(x^{3}\right) \sqrt{1+(9 x)^{4}} d x & =\int_{1}^{145} 2 \pi \sqrt{u}\left(\frac{d u}{36}\right) \\ & =\frac{2 \pi}{36} \int_{1}^{145} \sqrt{u} d u \end{aligned} \] \[ =\frac{2 \pi}{36}\left[\frac{2}{3} u^{\frac{2}{3}}\right]_{1}^{145} \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad