\( \angle 1 \) and \( \angle 2 \) are surphementan angles. If \( m / 1=(2 x-9)^{\circ} \) and \( m / 2=(2 x+21)^{\circ} \), then find the menowe of \( \angle 1 \).
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
Surplementary angles add up to \(180^\circ\). Therefore, you can set up the equation: \[ (2x - 9) + (2x + 21) = 180 \] Combine like terms to solve for \(x\): \[ 4x + 12 = 180 \] Subtract 12 from both sides: \[ 4x = 168 \] Divide by 4: \[ x = 42 \] Now, substitute \(x\) back into the expression for \(m \angle 1\): \[ m \angle 1 = 2(42) - 9 = 84 - 9 = 75^\circ \] Thus, the measure of \( \angle 1 \) is \(75^\circ\). To confirm, you can find \(m \angle 2\): \[ m \angle 2 = 2(42) + 21 = 84 + 21 = 105^\circ \] Adding them together: \(75^\circ + 105^\circ = 180^\circ\), which checks out!
