Pregunta
upstudy study bank question image url

The test statistic of is obtained when testing the claim that . This is a two-tailed test. Using a 0.05 significance level, complete parts (a) and (b).
Click here to view the standard normal distribution table for negative scores. Click here to view the standard normal distribution table for positive scores.
a. Find the critical value(s)
Select the correct choice below and fill in the answer box(es) within your choice.
(Round to two decimal places as needed.)
A. There are two critical values; the lower critical value is -1.96 and the upper critical value is 1.96 .
B. There is one critical value, the critical value is
A. Should we reject or should we fail to reject ?
B. should be rejected, since the test statistic is in the critical region.
B. should not be rejected, since the test statistic is not in the critical region.
C. should be rejected, since the test statistic is not in the critical region.
D. should not be rejected, since the test statistic is in the critical region.

Ask by Bright Gibbs. in the United States
Mar 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a. Critical Values:
  • Lower critical value:
  • Upper critical value:
b. Decision:
  • should not be rejected, since the test statistic is not in the critical region.

Solución

Step 1. Determine the Critical Values
For a two-tailed test at a significance level of , we split the significance level between the two tails. Each tail has an area of
The z-value corresponding to an upper tail probability of is approximately . Since the test is two-tailed, the lower critical value is the negative of this value:
Thus, the two critical values are:
  • Lower critical value:
  • Upper critical value:
This corresponds to choice:
A. There are two critical values; the lower critical value is and the upper critical value is .

Step 2. Decision Based on the Test Statistic
The test statistic provided is:
We compare this value to the critical values:
  • If or , we would reject .
  • Since , the test statistic does not fall in the critical region.
Thus, we do not have sufficient evidence to reject .
This corresponds to choice:
B. should not be rejected, since the test statistic is not in the critical region.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To determine the critical values for a two-tailed test at a significance level of 0.05, we can find the z-scores that correspond to the critical probability. Since the total area in both tails of the standard normal distribution must equal 0.05, each tail will have an area of 0.025. Looking up the critical z-values in the standard normal distribution table, we find that they are approximately -1.96 and 1.96. Hence, the correct choice is A, with lower critical value -1.96 and upper critical value 1.96.
Given the test statistic , we compare it to the critical values. Since -1.18 does not fall in the critical region defined by -1.96 and 1.96, we do not reject the null hypothesis . Therefore, the correct answer is B: should not be rejected, since the test statistic is not in the critical region.

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad