Pregunta
upstudy study bank question image url

The water of for a industry is stored in a hemispherical tank of internal diameter 14 m . The tank contains 40 kilolitres of water. Water is pumped into the tank to fill it to full capacity. Calculate the volume of water pumped into te tank.

Ask by Pope Best. in India
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The volume of water pumped into the tank is approximately 678.38 cubic meters.

Solución

To solve the problem, we need to follow these steps: 1. **Extract known conditions:** - The internal diameter of the hemispherical tank is 14 m. - The tank currently contains 40 kilolitres of water. - We need to calculate the volume of water pumped into the tank to fill it to full capacity. 2. **Calculate the volume of the hemispherical tank:** The formula for the volume \( V \) of a hemisphere is given by: \[ V = \frac{2}{3} \pi r^3 \] where \( r \) is the radius of the hemisphere. Since the diameter is 14 m, the radius \( r \) will be: \[ r = \frac{14}{2} = 7 \text{ m} \] 3. **Calculate the volume of the tank:** Now we can substitute the radius into the volume formula: \[ V = \frac{2}{3} \pi (7)^3 \] 4. **Convert the volume of water currently in the tank from kilolitres to cubic meters:** Since 1 kilolitre is equal to 1 cubic meter, 40 kilolitres is: \[ 40 \text{ m}^3 \] 5. **Calculate the volume of water pumped into the tank:** The volume of water to be pumped is the difference between the full volume of the tank and the current volume of water. Now, let's perform the calculations step by step. First, we will calculate the volume of the tank. Calculate the value by following steps: - step0: Calculate: \(\frac{2}{3}\pi \times 7^{3}\) - step1: Multiply: \(\frac{2\pi }{3}\times 7^{3}\) - step2: Multiply: \(\frac{2\pi \times 7^{3}}{3}\) - step3: Multiply: \(\frac{686\pi }{3}\) Calculate or simplify the expression \( 718.37752 - 40 \). Calculate the value by following steps: - step0: Calculate: \(718.37752-40\) - step1: Subtract the numbers: \(678.37752\) 1. **Volume of the hemispherical tank:** The volume of the tank is approximately \( 718.38 \, \text{m}^3 \). 2. **Current volume of water in the tank:** The tank currently contains \( 40 \, \text{m}^3 \) of water. 3. **Volume of water to be pumped into the tank:** The volume of water that needs to be pumped into the tank is: \[ 718.38 \, \text{m}^3 - 40 \, \text{m}^3 = 678.38 \, \text{m}^3 \] Thus, the volume of water pumped into the tank is approximately **678.38 cubic meters**.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find out how much water needs to be pumped into the tank, we first calculate the total volume of the hemispherical tank. The formula for the volume of a hemisphere is \( V = \frac{2}{3} \pi r^3 \). The internal diameter of the tank is 14 m, giving us a radius \( r = \frac{14}{2} = 7 \) m. Plugging this into the formula: \[ V = \frac{2}{3} \pi (7)^3 = \frac{2}{3} \pi (343) \approx 718.4 \, \text{m}^3. \] Since \(1 \, \text{m}^3 = 1000 \, \text{liters}\), the total volume in kilolitres is \(718.4 \, \text{m}^3 = 718.4 \, \text{kl} \). Now, the tank currently has 40 kilolitres of water, so we need to find the difference: \[ 718.4 \, \text{kl} - 40 \, \text{kl} = 678.4 \, \text{kl}. \] Thus, the volume of water pumped into the tank is **678.4 kilolitres**.

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad