Pregunta
upstudy study bank question image url

Point \( (2,1) \) and \( (6,7) \) are opposite vertices of a square which is nscribed in a circle find the centre and equation of a circle

Ask by King Carroll. in Nigeria
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The center of the circle is at \( (4, 4) \) and its equation is \( (x - 4)^2 + (y - 4)^2 = 13 \).

Solución

To find the center and equation of the circle inscribed around the square with opposite vertices at points \( (2,1) \) and \( (6,7) \), we can follow these steps: 1. **Find the center of the square**: The center of the square is the midpoint of the line segment connecting the two opposite vertices. 2. **Calculate the midpoint**: The midpoint \( M \) of the points \( (x_1, y_1) \) and \( (x_2, y_2) \) is given by the formula: \[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \] 3. **Calculate the radius of the circle**: The radius of the circle is half the length of the diagonal of the square. The length of the diagonal can be calculated using the distance formula: \[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] 4. **Write the equation of the circle**: The equation of a circle with center \( (h, k) \) and radius \( r \) is given by: \[ (x - h)^2 + (y - k)^2 = r^2 \] Now, let's perform the calculations step by step. ### Step 1: Find the midpoint Let \( (x_1, y_1) = (2, 1) \) and \( (x_2, y_2) = (6, 7) \). Calculating the midpoint: \[ M = \left( \frac{2 + 6}{2}, \frac{1 + 7}{2} \right) = \left( \frac{8}{2}, \frac{8}{2} \right) = (4, 4) \] ### Step 2: Calculate the length of the diagonal Using the distance formula: \[ d = \sqrt{(6 - 2)^2 + (7 - 1)^2} = \sqrt{4^2 + 6^2} = \sqrt{16 + 36} = \sqrt{52} = 2\sqrt{13} \] ### Step 3: Calculate the radius The radius \( r \) is half the length of the diagonal: \[ r = \frac{d}{2} = \frac{2\sqrt{13}}{2} = \sqrt{13} \] ### Step 4: Write the equation of the circle The center of the circle is \( (4, 4) \) and the radius is \( \sqrt{13} \). Thus, the equation of the circle is: \[ (x - 4)^2 + (y - 4)^2 = (\sqrt{13})^2 \] This simplifies to: \[ (x - 4)^2 + (y - 4)^2 = 13 \] ### Final Answer - The center of the circle is \( (4, 4) \). - The equation of the circle is \( (x - 4)^2 + (y - 4)^2 = 13 \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the center of the circle inscribing the square, we first need to find the midpoint of the segment connecting the opposite vertices \( (2,1) \) and \( (6,7) \). The midpoint \( M \) is calculated as follows: \[ M = \left( \frac{2+6}{2}, \frac{1+7}{2} \right) = \left( \frac{8}{2}, \frac{8}{2} \right) = (4, 4) \] The center of the circle is at the point \( (4, 4) \). Next, we find the distance between the two opposite vertices to determine the radius. The distance is calculated using the distance formula: \[ d = \sqrt{(6-2)^2 + (7-1)^2} = \sqrt{(4)^2 + (6)^2} = \sqrt{16 + 36} = \sqrt{52} = 2\sqrt{13} \] The distance represents the diagonal of the square, and the radius of the circle is half of the diagonal: \[ \text{Radius} = \frac{d}{2} = \frac{2\sqrt{13}}{2} = \sqrt{13} \] Finally, the equation of the circle is given by \( (x-h)^2 + (y-k)^2 = r^2 \), where \( (h,k) \) is the center and \( r \) is the radius. Thus, we have: \[ (x - 4)^2 + (y - 4)^2 = 13 \] This is the equation of the circle inscribing the square. To sum it up, the center of the circle is \( (4, 4) \) and the equation of the circle is \( (x - 4)^2 + (y - 4)^2 = 13 \).

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad