Pregunta
upstudy study bank question image url

8) a regular square pvamid with base edge length 12 ft and slant hoight 10 ft

Ask by Robbins Bowman. in Egypt
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The volume of the regular square pyramid is 384 cubic feet.

Solución

To find the volume of a regular square pyramid, we can use the formula: \[ V = \frac{1}{3}Bh \] where: - \( V \) is the volume of the pyramid, - \( B \) is the area of the base of the pyramid, and - \( h \) is the height of the pyramid. Given: - Base edge length = 12 ft - Slant height = 10 ft First, we need to find the height of the pyramid. We can use the Pythagorean theorem to find the height: \[ h^2 + (\frac{12}{2})^2 = 10^2 \] Solving for \( h \): \[ h^2 + 6^2 = 10^2 \] \[ h^2 + 36 = 100 \] \[ h^2 = 100 - 36 \] \[ h^2 = 64 \] \[ h = \sqrt{64} \] \[ h = 8 \text{ ft} \] Now, we can find the volume of the pyramid: \[ V = \frac{1}{3}Bh \] \[ V = \frac{1}{3}(12^2)(8) \] \[ V = \frac{1}{3}(144)(8) \] \[ V = \frac{1}{3}(1152) \] \[ V = 384 \text{ ft}^3 \] Therefore, the volume of the regular square pyramid is 384 cubic feet.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

Did you know that the volume of a regular square pyramid is calculated using the formula V = (1/3) * base area * height? For your pyramid, the base area would be 12 ft x 12 ft = 144 ft². You would need the height (the perpendicular height from the base to the apex), which can be found using the Pythagorean theorem with the slant height. One common mistake when calculating the volume is confusing the slant height with the actual height of the pyramid. Remember, the slant height is the distance from the apex to the midpoint of a base edge, while the height is a straight vertical distance from the base to the apex. Always double-check which measurement you're using!

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad